Data & AI Literacy

Brief description

• DIKW-Pyramide (Daten, Information, Wissen, Weisheit) und ähnliche Modelle • Datentypen, Datenstrukturen, Klassifikation von Daten • Grundlagen der Datenqualität und des Datenmanagements, Data-Literacy-Vokabular • Grundlegende Datenanalysetechniken, Überblick über gängige Datenanalyse-Werkzeuge • Grundkonzepte und Arten der KI, AI-Literacy-Vokabular • Grundlegende Techniken und -Anwendungen der KI (Maschinelles Lernen, Natürliche Sprachverarbeitung, Computer Vision, etc.) • Grundlegende rechtliche und ethische Aspekte der Daten- und KI-Nutzung (Datenschutz und -sicherheit)

Mode of delivery

face to face

Type

compulsory

Recommended or required reading and other learning resources/tools

• Jones, B. (2020). Data Literacy Fundamentals: Understanding the Power & Value of Data. Data Literacy Press. • Jones, B. (2024). AI Literacy Fundamentals: Helping You Join the AI Conversation. Data Literacy Press.

Planned learning activities and teaching methods

Vortrag, Diskussion, Einzel-/Gruppenaufgaben, Präsentation, Blended Learning-Elemente (z.B. Videos, Quizzes)

Assessment methods and criteria

• 60% Einzel-/Gruppenaufgaben (Beurteilungskriterien: Plausibilität der Analyse und des Lösungsvorschlags, korrekte Anwendung relevanter Methoden und Techniken, formale Korrektheit) • 40% Schriftliche Prüfung (Closed Book) (Beurteilungskriterien: inhaltliche Korrektheit, Kenntnis und praktische Anwendung der Methoden und Ansätze, Vollständigkeit der Antworten)

Prerequisites and co-requisites

Keine

Infos

Degree programme

Projectmanagement & Organisation (Master)

Cycle

Master

ECTS Credits

2.00

Language of instruction

German

Curriculum

Part-Time

Academic year

2025

Semester

1 WS

Incoming

No

Learning outcome

Nach erfolgreichem Abschluss der Lehrveranstaltung sind Studierende in der Lage, • die Grundkonzepte des Datenumfeldes (Daten, Information, Wissen, etc.) zu erläutern, • verschiedene Datentypen und -strukturen exemplarisch zu identifizieren und zu klassifizieren, • Konzepte der Datenqualität zu erklären und grundlegende Techniken des Datenmanagements, insbesondere zur Sicherstellung der Datenqualität zu beschreiben, • grundlegende Datenanalysetechniken, insbesondere der deskriptiven Statistik und der explorativen Datenanalyse, zu beschreiben und in einfachen Situationen anzuwenden und Analyseergebnisse zu interpretieren, • die Grundlagen der Künstlichen Intelligenz (KI, engl. Artificial Intelligence (AI)) einschließlich maschinellen Lernens, natürliche Sprachverarbeitung (NLP) und Computer Vision zu erklären, • grundlegende AI-Literacy- und Data-Literacy-Konzepte zu beschreiben und entsprechendes Vokabular korrekt zu verwenden, sowie • grundlegende rechtliche und ethische Aspekte der Daten- und KI-Nutzung zu erläutern.

Course code

0388-25-01-BB-DE-11