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Preamble

This text is the sole document needed to prepare for the admission test to the study program Quanti-
tative Asset and Risk Management (ARIMA) at the University of Applied Sciences BFI Vienna. This
admission test will be conducted as a PC-based multiple choice test. During the test, applicants are
either asked to perform similar calculations as shown in the text or to use the definitions included for
a plausibility check on the presented answers.

Overall, this text contains six chapters, of which the first three discuss important mathematical con-
cepts such as algebra, the definition and properties of functions and the calculation of the derivative
of a function. Chapter 4 presents the fundamental concepts used for calculating the rate of return.
Returns and returns vectors are one of the most important inputs to models in mathematical finance
and are therefore part of almost every course covered during the ARIMA study program.

Chapters 5 and 6 highlight basic statistical concepts. Chapter 5 discusses the possibilities of descriptive
statistical methods used for analyzing and presenting given data sets. In the closing chapter the
theoretical concept of random variables is briefly introduced. Additionally some of the most important
theoretical probability distributions such as the Binomial distribution and the Gaussian distribution
are covered in some detail.

The preparation text was written by the members of the ARIMA-Team. Although we review it in
regular intervals, it may still include some typos and literal mistakes. Feedback is always welcomed!
We wish everyone reading this text a good time and hope that we will you at our admission test.

Best regards,
The ARIMA-Team October 2022 in Vienna, Austria
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1 Algebra

The major difference between algebra and arithmetics is the inclusion of variables in algebra. While
in arithmetics only numbers and their arithmetical operations (such as +,−, ·,÷) occur, in algebra
variables such as x and y or a and b are used to replace numbers.

The purpose of using variables is to allow generalisations in mathematics. This is useful because it
allows

� arithmetical equations to be stated as laws (e.g. a+ b = b+ a for all a and b).

� reference to values which are not known. In context of a problem, a variable may represent a
certain value which is not yet known, but which may be found through the formulation and
manipulation of equations.

� the exploration of mathematical relationships between quantities.

1.1 Elementary algebra

In elementary algebra, an expression may contain numbers, variables and arithmetical operations.
These are conventionally written with ≪higher-power≫ terms on the left.

Examples for algebraic expressions

1. x+ 2

2. x2 − 2y + 7

3. z8 + x3(b+ 2x) + a4b− π

4. a3−4ab+3
a2−1

In mathematics it is important that the value of an expression is always computed the same way.
Therefore, it is necessary to compute the parts of an expression in a particular order, known as
the order of operations. In elementary algebra three mathematical operations are used. Algebraic
expressions can be linked via addition, multiplication and applying exponents. Additionally, algebraic
expressions can contain parenthesis and absolute value symbols.

The standard order of operations is expressed in the following list.
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1 Algebra

1. parenthesis and other grouping symbols including brackets

2. absolute value symbols and the fraction bar

3. exponents and roots

4. multiplication and division

5. addition and substraction

The three basic algebraic operations have certain properties. These are briefly described in the following
list.

Addition The symbol for addition is + and for its inverse operation substraction it is −. While addition
is associative1 and commutative2, substraction is neither of them.

Multiplication The standard symbol for multiplication is ·. Sometimes × is used as well. By con-
vention, the symbol for multiplication can be left out if the interpretation is clear. The symbol
for its inverse operation division is ÷ or the fraction bar. Similar to addition, multiplication is
associative and commutative, while division is not. Furthermore multiplication is distributive3

over addition.

Exponentiation Usually exponentiation is represented by raising the exponent, e.g. ab. Like the two
inverse operations substraction and division, exponentiation is neither commutative nor associa-
tive. But it distributes over multiplication, as

(ab)c = acbc

holds for all a, b and c.

1An operation ⋄ is associative if and only if

(a ⋄ b) ⋄ c = a ⋄ (b ⋄ c)

holds for all a, b and c.
For example:

(3 + 4) + 5 = 7 + 5 = 12 = 3 + 9 = 3 + (4 + 5).

2An operation ⋄ is commutative if and only if
a ⋄ b = b ⋄ a

holds for all a and b.
For example:

3 + 4 = 7 = 4 + 3.

3An operation ⋆ distributes over an operation ⋄, if and only if

(a ⋄ b) ⋆ c = a ⋆ c ⋄ b ⋆ c

holds for all a, b and c.
For example:

(3 + 4) · 5 = 7 · 5 = 35 = 15 + 20 = (3 · 5) + (4 · 5).
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1 Algebra

Exponentiation has two inverse operations, the logarithm and the nth root. For the logarithm

aloga b = b = loga a
b

holds for all a and b whereas for the root (
b
√
a
)b

= a

holds for all a and b.

Additionally the following equations hold

a
m
n =

(
n
√
a
)m

= n
√
am,

abac = ab+c,(
ab
)c

= abc.

Examples for elementary algebraic operations

1. Applying the multiplicative distribution rules for (x2 + 2x− 1)(x+ 2) we have

(x2 + 2x− 1)(x+ 2) = x3 + 2x2 − x+ 2x2 + 4x− 2

= x3 + 4x2 + 3x− 2.

2. For (a2 − 3b)2 we have

(a2 − 3b)2 = a4 − 6a2b+ 9b2.

3. A fraction like x+4
x2−1

+ 3x
x2−1

+ 4x can be simplified as

x+ 4

x2 − 1
+

3x

x2 − 1
+ 4x =

(x+ 4) + (3x) + 4x(x2 − 1)

x2 − 1

=
x+ 4 + 3x+ 4x3 − 4x

x2 − 1
=

4x3 + 4

x2 − 1
.

For 4x
7 + 8

7 − x we have

4x

7
+

8

7
− x =

4x− 7x+ 8

7
=

−3x+ 8

7
.

Finally, x2−1
x+1 is simplified as

x2 − 1

x+ 1
=

(x+ 1)(x− 1)

x+ 1
= x− 1.

4. Calculating with exponents simplifies (3a)4 · (3a)7 · a to

(3a)4 · (3a)7 · a = (3a)4+7 (3a)
1

3
=

312a12

3
= 311a12

and
√
x · x2 to

√
x · x2 = x

1
2x2 = x

5
2 =

√
x5.
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1 Algebra

5. A standard multiplicative rule is that

(x+ 1)(x− 1) = x2 − x+ x− 1 = x2 − 1

holds.

1.2 Equations

In general, an equation is a mathematical statement that asserts the equality of two expressions. It is
written by placing the expressions on either side of an equals sign =, for example

x+ 2 = 6

asserts that x+ 2 is equal to 6.

Equations often express relationships between given quantities, the knowns, and quantities yet to
be determined, the unknowns. Usually unknowns are denoted by letters at the end of the alpha-
bet (x, y, z, w, . . .) while knowns are denoted by letters at the beginning (a, b, c, . . .). The process of
expressing the unknowns in terms of the knowns is called solving the equation.

The example stated above shows an equation with a single unknown. A value of that unknown for
which the equation is true is called a solution or root of the equation. In the example above, 4 is the
solution.

If both sides of the equations are polynomials the equation is called an algebraic equation.

1.2.1 Linear equations

The simplest equations to solve are linear equations that have only one variable. They contain only
constant numbers and a single variable without an exponent.

The central technique is add, subtract, multiply or divide both sides of the equation by the same
number in order to isolate the variable on one side of the equation. Once the variable is isolated, the
other side of the equation is the value of the variable.

In the general case a linear equation looks as follows

ax+ b = c.

The solution is given by

x =
c− b

a
.
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1.2.2 Quadratic equations

All quadratic equations can be expressed in the form

ax2 + bx+ c = 0,

where a is not zero (if it were so, the equation would be a linear equation). As a ̸= 0 we may divide
by a and rearrange the equation into the standard form

x2 + px+ q = 0.

Then the solution of the equation can be calculated by using the following formula:

x1,2 = −p

2
±
√

p2

4
− q. (1.1)

A quadratic equation with real coefficients (a, b, c ∈ R) can have either zero, one or two distinct real
roots, or two distinct complex roots. The discriminant determines the number and nature of the roots.
The discriminant is the expression underneath the square root sign. If it is negative, the solutions are
complex (∈ C) and no real root exists. If it is positive, the solutions are real (∈ R) and if it is 0, there
is only one real solution (formally, the two real solutions coincide).

1.2.3 Exponential and logarithmic equations

An exponential equation is an equation of the form

ax = b for a > 0,

which has the solution

x = loga b =
log b

log a

when b > 0.

Elementary algebraic techniques are used to rewrite a given equation. As mentioned above this is used
to isolate the unknown and thus calculate the solution.

For example, if
3 · 2x−1 + 1 = 10

then, by subtracting 1 from both sides, and then dividing both sides of the equation by 3 we obtain

2x−1 = 3.

Applying the natural logarithm (see section 2.6.6 for properties of the logarithmic functions) on both
sides we get

(x− 1) log 2 = log 3

9



1 Algebra

or

x =
log 3

log 2
+ 1 ≈ 2.5850.

A logarithmic equation is an equation of the form

loga x = b for a > 0,

which has the solution
x = ab.

1.2.4 Radical equations

A radical equation is an equation of the form

x
m
n = a m, n ∈ N, n ̸= 0.

For these types of equations two cases have to be considered separately.

� If the exponent m is odd the equation has the solution

x = m
√
an =

(
m
√
a
)n

.

� If the exponent m is even and a ≥ 0 the equation has the two solutions

x = ± m
√
an = ±

(
m
√
a
)n

.

Examples for solving equations

1. The equation 4x = 8 can be solved by dividing both sides by 4. The solution to the equation is
x = 2.

2. The equation x2 + 10x− 11 = 0 can be solved directly using the solution given in equation 1.1.
As p = 10 and q = −11 we get:

x1,2 = −5±
√
25− (−11) = −5±

√
36

x1 = −5 + 6 = 1

x2 = −5− 6 = −11.

3. Let us consider4

4 log10(x− 3)− 2 = 6.

By adding 2 to both sides, followed by dividing both sides of the equation by 4 we get

log10(x− 3) = 2.

4For the definition of the logarithm to the base 10, denoted as log10(·) see section 2.6.6.
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By applying the function
f(x) = 10x

on both sides of the equation we obtain x− 3 = 102 = 100 and x = 103 respectively.

4. The equation

(x+ 5)
2
3 = 4

has an even exponent m = 2 and positive a = 4. Therefore there exist two solutions. We get

x+ 5 = ±
(√

4
)3

= ±8

x1,2 = −5± 8

and x ∈ {3,−13}.
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2 Functions

The first formalization of functions was created in the 17th century by Gottfried Wilhelm Leibniz. He
coined the term function to indicate the dependence of one quantity on another.

A function can be described as a ≪machine≫, a ≪black box≫ or a ≪rule≫ that, for each input, returns
a corresponding output. Figure 2.1 shows a schematic picture of the relationships of a function f(x).

Figure 2.1: A function f takes an input x and returns an output f(x).

2.1 Definition of functions

In formal terms a function f is given by

f : D → R

x 7→ f(x).

To distinguish the different sets involved in the definition of a function the following terms are used:

Domain The input x to a function is called the argument of the function. The set of all possible inputs
D is called the domain.

Range The output f(x) of a function is called the value. The set R of all possible outputs is called
the range.

Image The image of a subset A of the domain under the function can be defined as well. For A ⊆ D
the image of A under f is denoted f(A) ⊆ R and is a subset of the functions range.
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2 Functions

The image of the whole domain D under f is a subset of the range R as well. We have f(D) ⊆ R.
f(D) is sometimes simply referred to as the image of f .

Preimage The preimage of a subset B of the range of the function (B ⊆ R) under the function
f is the set A ⊆ D of all elements x for which f(x) lies within B, formally A = f−1(B) or
A = {x ∈ A : f(x) ∈ B}.

Graph The set {(x, f(x)) : x ∈ D} of all paired inputs and outputs is called the graph of the function.
A function is fully defined by its graph. In case of a real-valued function f of real values, the
graph of f lies in the xy-plane.

2.2 Well defined functions

Generally spoken, a function is well defined if there is a unique f(x) for every x in the domain of
f . This means that a function is well defined if and only if all arguments x have only one possible
function value f(x) (or none).

For functions where the domain and the range consist of real numbers, there is a general rule to
determine if the function is well defined. This rule is called the vertical line test.

A curve in the xy-plane is the graph of some function f with R as domain and range, if
and only if no vertical line intersects the curve more than once.

Examples for different functions

1. The function of a simple parabola in the plane is defined by

f : R → R
x 7→ x2

and shown in figure 2.2.

2. The function which aligns every integer number to the constant number 4 is defined by

f : Z → Z
x 7→ 4

and shown in figure 2.3.

3. A function which aligns every number to its non-negative number is defined by

f : R → R
x 7→ |x|

and shown in figure 2.4.
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Figure 2.2: The polynomial function f(x) = x2 from -5 to 5.
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Figure 2.3: The constant function f(x) = 4 from -5 to 5.
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Figure 2.4: The absolute value function f(x) = |x| from -5 to 5.

4. Furthermore, a function can be defined piecewise. That is a function which is defined by multiple
subfunctions, each subfunction applying to a certain interval of the main functions domain (a

14
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sub-domain):

f : R → R

x 7→


0, x ≤ −1

+
√
1− x2, −1 < x < 1

x, x ≥ 1.

Figure 2.5 shows the graph of the function.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

Figure 2.5: A piecewise defined function from -5 to 5 with a jump at x = 1.

There are many ways to describe or represent a function. Some functions may be described by a
formula or an algorithm that defines how to compute the output for a given input. A function can also
be presented graphically. Sometimes functions are given by a table that gives the outputs for selected
inputs. Furthermore a function can be described through its relationship with other functions, for
example as an inverse function or as a solution of a differential equation.

2.3 Properties of functions

It is not enough to say ≪f is a function≫ without specifying the domain and the range, unless these
are known from the context. For example, a formula such as

f(x) =
√

x2 − 5x+ 6

is not a properly defined function on its own. However, it is standard to take the largest possible
subset of R as the domain (in this case x ≤ 2 or x ≥ 3) and R as range.

2.3.1 Equations of functions

Well defined functions, which lie in the xy-plane can be represented by their equations. For a function
f(x) the equation can be obtained by replacing f(x) with y.

15
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For example, the function

f : R → R
x 7→ x2 − 4x+ 3

lies in the xy-plane. The equation for this function is y = x2 − 4x+ 3.

2.3.2 Monotone functions

A function whose graph is always rising as it is traversed from left to right is said to be an increasing
function.
Definition Let x1 and x2 be arbitrary points in the domain of a function f . Then f is strictly
increasing if

f(x1) < f(x2) whenever x1 < x2.

A function whose graph is always falling as it is traversed from left to right is said to be a decreasing
function.
Definition Again, let x1 and x2 be arbitrary points in the domain of a function f . Then f is strictly
decreasing if

f(x1) > f(x2) whenever x1 < x2.

Note that strictly increasing and strictly decreasing functions are always injective and therefore inver-
tible (see section 2.5).

2.3.3 Continuity

Another important property of functions is the property of continuity. A continuous function is a
function for which ≪small≫ changes in the input result in ≪small≫ changes in the output. Otherwise,
a function is said to be discontinuous.

If the function is a real-valued function of real values and therefore its graph lies in the xy-plane, then
the continuity of the function can be recognized in the graph. The function is continuous if, roughly
speaking, the graph is a single unbroken curve with no gaps or jumps.

There are several ways to make this intuition mathematically rigorous. For example:

The function f : D → R is continuous at c ∈ D, if and only if for every ε > 0 there is a
δ > 0 such that

for all x ∈ D for which it holds that |x− c| < δ =⇒ |f(x)− f(c)| < ε.

More intuitively, we can say that if we want to get all the f(x) values to stay in some small
neighborhood around f(c), we simply need to choose a small enough neighborhood for the
x values around c. If that is possible, no matter of how small the f(c)-neighborhood is,
then f is continuous at c.
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A function f is said to be continuous if it is continuous at all points c ∈ D.

Examples of continuous and discontinuous functions

1. All polynomials are continuous, for example f(x) = x2 − 1.

2. The absolute value function f(x) = |x| is continuous.

3. The sign-function

sgn(x) =


1 if x > 0
0 if x = 0
−1 if x < 0

is not continuous, as it jumps around x = 0.

2.4 Operations with functions

In analogy to arithmetics, it is possible to define addition, subtraction, multiplication and division of
functions. Another important operation on functions is composition. When composing functions, the
output from one function becomes the input to another function.

2.4.1 Arithmetic operations

For this section we consider the two function f : D → R and g : D′ → R′.

Addition of functions The addition of two functions f and g is defined as

(f + g)(x) = f(x) + g(x).

The domain of the new function f + g is the intersection of the domains of f and g. Formally,
we get D ∩D′ as the domain of the function f + g.

Subtraction of functions Similarly, the subtraction of two functions f and g is defined as

(f − g)(x) = f(x)− g(x).

Again, the domain of the new function f − g is the intersection of the domains of f and g.
Formally, we get D ∩D′ as the domain of the function f − g.

Multiplication of functions Additionally, the multiplication of two functions f and g is defined as

(f · g)(x) = f(x) · g(x),

where the domain of the new function f · g is the intersection of the domains of f and g. Again,
we get D ∩D′ as the domain of the function f · g.
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Division of functions Finally, the division of two functions f and g is defined as(
f

g

)
(x) =

f(x)

g(x)
.

In this case the domain of the new function f/g is the intersection of the domains of f and g
excluding the points where g(x) = 0 (to avoid division by zero). Note that the points x where
g(x) = 0 can be written as the preimage of the set containing 0 under the function g. We get
(D ∩D′) \ g−1({0}) as the new domain.

2.4.2 Composition of functions

Now we consider a new operation on functions, called composition. This operation has no direct
analogy in arithmetics. Informally stated, the operation of composition is performed by substituting
some function for the variable of another function.

Definition Given functions f : D → R and g : D′ → R′, the composition of f and g, denoted by f ◦g,
is the function defined by

(f ◦ g)(x) = f(g(x)).

The domain of f ◦ g is defined as all x in the domain of g for which g(x) is in the domain of f . If we
denote the new domain with E, this means E = {x ∈ D′ : g(x) ∈ D}.

Examples

1. Let f(x) = x2 − 3x+ 4 and g(x) = x2 − 1. Then we have

a. (f + g)(x) = x2 − 3x+ 4 + x2 − 1 = 2x2 − 3x+ 3

b. (f − x)(x) = x2 − 3x+ 4− (x2 − 1) = −3x+ 5

c. (f · g)(x) = (x2 − 3x+ 4)(x2 − 1) = x4 − 3x3 + 3x2 + 3x− 4

d.
(
f
g

)
(x) = x2−3x+4

x2−1
, which is defined for x ∈ R \ {−1, 1}.

2. Let f(x) = x3 and g(x) = x2 − 4. Then we have

a. (f + g)(x) = x3 + x2 − 4

b. (f − g)(x) = x3 − x2 + 4

c. (f · g)(x) = x5 − 4x3

d.
(
f
g

)
(x) = x3

x2−4
, which is defined for x ∈ R \ {−2, 2}.

3. Let f(x) = x2 − 3x+ 4 and g(x) = x2 − 1. Lets calculate f ◦ g(x) and g ◦ f(x).
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a. For f ◦ g(x) we get

f(g(x)) = (x2 − 1)2 − 3(x2 − 1) + 4 = x4 − 5x2 + 8.

b. For g ◦ f(x) we get

g(f(x)) = (x2 − 3x+ 4)2 − 1 = x4 − 6x3 + 17x2 − 24x+ 15.

4. Let f(x) = 1
x2 and g(x) = x2 + 4. Lets calculate f ◦ g(x) and g ◦ f(x).

a. For f ◦ g(x) we get

f(g(x)) =
1

(x2 + 4)2
.

b. For g ◦ f(x) we get

g(f(x)) =

(
1

x2

)2

+ 4 =
4x4 + 1

x4
.

2.5 Inverse functions

In mathematics, an inverse function is a function that undoes another function. Two functions f and
g are said to be inverse to each other, if an input x into the function f produces an output y and
plugging this y into the function g produces the output x, and vice versa.

Example
Suppose g is the inverse function of f . Then f(x) = y and g(y) = x. Furthermore f(g(x)) = x, meaning
g(x) composed with f(x) leaves x unchanged.

A function f that has an inverse is called invertible. The inverse function is unique for every f and is
denoted by f−1.

Definition and determination of the inverse function

Let f be a function whose domain is the set D and whose range is the set R. Then f is invertible if
there exists a function g with domain R and range D with the property:

f(x) = y if and only if g(y) = x.

If f is invertible, the function g is unique and is called the inverse of f , denoted by f−1.

Not all functions have an inverse. For this rule to be applicable, each element y ∈ R must correspond
to no more than one x ∈ D. A function f with this property is called injective.

The most powerful approach to find a formula for f−1 , if it exists, is to solve the equation x = f(y)
for y.
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Graph of the inverse function

If f and f−1 are inverses, then the graph of the function y = f−1(x) is the same as the graph of
the equation x = f(y). Thus the graph of f−1 can be obtained from the graph of f by switching the
positions of the x and y axes. This is equivalent to reflecting the graph across the line y = x.

In figure 2.6 the graphs of the functions f(x) and f−1(x) of example 5 below are shown.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

2

3 f(x)

f−1(x)

Figure 2.6: f(x) =
(
x+1
2

)3
in blue and its inverse f−1(x) = 2 3

√
x− 1 in green from 0 to 2.

Examples

1. The function f(x) = x2 is only invertible if the domain is restricted to positive numbers (or
alternative restricted to negative numbers). If so, the inverse function is f−1(x) =

√
x.

2. For a function f(x) = x− a, where a is a constant, the inverse function is f−1(x) = x+ a.

3. For a function f(x) = mx, where m is a constant, the inverse function is f−1(x) = x
m . Thereby

m ̸= 0 must hold.

4. For a function f(x) = 1
x the inverse function is f−1(x) = 1

x , where x ̸= 0 must hold.

5. f is the function

f(x) =

(
x

2
+

1

2

)3

.

To find the inverse we must solve the equation x =
(y
2 + 1

2

)3
for y:

x =

(
y

2
+

1

2

)3

3
√
x =

y + 1

2
2 3
√
x− 1 = y
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Thus the inverse function f−1 is given by the formula

f−1(x) = 2 3
√
x− 1.

2.6 Special functions

There exists an overwhelming number of different functions. Nevertheless there are several classes of
functions, which should be considered separately.

2.6.1 Polynomial functions

A polynomial function is a function that can be defined by evaluating a polynomial. A function f of
one argument is called a polynomial function if it satisfies

f(x) = anx
n + an−1x

n−1 + . . .+ a2x
2 + a1x+ a0 =

n∑
i=0

aix
i (2.1)

for all arguments x, where n is a non-negative integer and a0, a1, a2, . . . , an are constant coefficients.
A polynomial function is either zero, or can be written as the sum of one or more non-zero terms as
denoted in equation 2.1. The number of terms is always finite.

The exponent of a variable in a term is called the degree of that variable in that term. The degree of a
polynomial is the largest degree of any term. Since x = x1, the degree of a variable without exponent
is one. A term with no variable is called a constant term, or just a constant. The degree of a constant
term is 0, since x0 = 1.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−40

−20

0

20

40

degree 2
degree 3
degree 5

Figure 2.7: Three polynomial functions of degree 2, 3 and 5 from -5 to 5.

Polynomial functions are widely used in different applications in physics, economics, calculus and
numerical analysis. Furthermore they can be used to approximate other functions. The application of
polynomial functions in a wide range of topics is due to some elementary properties of polynomials:
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1. A sum of polynomials is a polynomial. The degree of the resulting polynomial equals the higher
degree of the two added polynomials. For example (x2 + 3x+ 1) + (x− 1) = x2 + 4x.

2. A product of polynomials is a polynomial. The degree of the resulting polynomial equals the
sum of the degrees of the two multiplied polynomials. For example (x2 + 3x + 1)(x − 1) =
x3 + 2x2 − 2x− 1.

3. A composition of two polynomials is a polynomial. It is obtained by substituting a variable of
the first polynomial by the second polynomial. The degree of the resulting polynomial equals
the product of the degrees of the two polynomials of the composition.
For example, for f(x) = x2 + 3x+ 1 and g(x) = x− 1 the composition f ◦ g results in

f ◦ g(x) = x2 + x− 1.

Note that the composition g ◦ f results in a different polynomial, namely

g ◦ f(x) = x2 + 3x.

4. All polynomials are continuous functions.

5. The derivative5 of the polynomial

anx
n + an−1x

n−1 + . . .+ a2x
2 + a1x+ a0

is the polynomial
nanx

n−1 + (n− 1)an−1x
n−2 + . . .+ 2a2x+ a1.

Furthermore polynomials are smooth functions, which means that all orders of derivatives of
polynomials exist. The resulting derivatives of any order are always polynomials as well.

6. Any polynomial function P (x) of nth order has n roots (roots are values for x where P (x) = 0).
These roots may be complex numbers (∈ C).

Furthermore every polynomial function can be written as product of simpler polynomials, using
its roots. Let (xi)i=1,...,n denote the roots of the polynomial function P (x) of degree n. Then the
following holds

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

= an(x− x1) · . . . · (x− xn).

Examples of different polynomials

1. A constant polynomial would be f(x) = 3.

2. Linear polynomials look like f(x) = 2x− 1
2 and f(x) = 3x

2 − 2.

3. A polynomial of degree 2 is f(x) = x2 + 3x+ 20.

5For more information on derivatives, see chapter 3.
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4. A polynomial of degree 3 is f(x) = 7x3

12 + x2 − 5x.

5. A polynomial of degree 5 looks like f(x) = x5−3x3

100 − 8.

6. In figure 2.7 the graphs of the polynomials given in examples 3-5 are shown.

2.6.2 Power functions

Power functions are elementary mathematical functions of the form

f : x 7→ a · xr a, r ∈ R.

The possible domain6 depends on the exponent. If roots of negative numbers are not allowed (which
is mostly the case, except if the range includes complex numbers C), then the maximum size of the
domain D of the power function depends on the exponent r ∈ R. Table 2.1 lists the possible domains,
depending on the nature of the exponent r.

r > 0 r < 0

r ∈ Z D ⊆ R D ⊆ R \ {0}
r ̸∈ Z D ⊆ R+

0 D ⊆ R+

Table 2.1: The possible domains D for power functions, depending on r ∈ R.

For the maximum range of a power function, the sign of a has to be considered as well. If r ∈ Z, the
range differs depending on whether r is an odd or even number. Table 2.2 lists the possibilities for
the maximum range of the power function, depending on the nature of the coefficient a ∈ R and the
exponent r ∈ R of the power function.

r > 0 r < 0

r even or r ̸∈ Z r odd r even or r ̸∈ Z r odd

a > 0 R ⊆ R+
0 R ⊆ R R ⊆ R+ R ⊆ R \ {0}

a < 0 R ⊆ R−
0 R ⊆ R R ⊆ R− R ⊆ R \ {0}

Table 2.2: The possible maximum ranges R for power functions, depending on a, r ∈ R.

Examples of power functions

1. f(x) = x4

2. f(x) =
7
√
x3 = x

3
7

3. f(x) = 5√
x
= 5x−

1
2

4. f(x) = 1
7 · 1

x5 = 1
7x

−5

6See section 2.1.
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2.6.3 Rational functions

A rational function is a function which can be written as ratio of two polynomial functions7. Neither the
coefficients of the polynomials nor the values taken by the function are necessarily rational numbers.

In case of one variable x, a function is called a rational function if and only if it can be written in the
form

f(x) =
P (x)

Q(x)

where P (x) and Q(x) are polynomial functions and Q is not the zero polynomial. The domain of f is
the set of all points x for which the denominator Q(x) is not zero.

Examples for different rational functions

1. An example for a rational function of degree 2 is

f(x) =
x2 − 3x− 2

x2 − 4
.

The graph of this function is shown in figure 2.8. It can be seen that the function has a horizontal
asymptote at y = 1 and two vertical asymptotes at x = ±2. For x = ±2 the function is not
defined.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−10

−5

0

5

10

Figure 2.8: f(x) = x2−3x−2
x2−4

from -5 to 5 with vertical asymptotes at x± 2.

2. A rational function of degree 3 is

f(x) =
x3 − 2x

2(x2 − 5)
.

The graph of this function is shown in figure 2.9. It can be seen that the function has two
vertical asymptotes at x = ±

√
5. Furthermore the linear function g(x) = x

2 is an asymptote. For

x = ±
√
5 the function is not defined.

7See section 2.6.1.
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Figure 2.9: f(x) = x3−2x
2(x2−5)

from -5 to 5 with vertical asymptotes at x±
√
2.

2.6.4 Trigonometric functions

Trigonometric functions are functions of an angle. They are used to relate angles of a triangle to the
length of the sides of that triangle. The most familiar trigonometric functions are sine, cosine and
tangent.

The definition of trigonometric functions works best in the context of the standard unit circle with
radius 1. In such a circle a triangle is formed by a ray originating at the origin and making some
angle θ with the x-axis. The sine of the angle θ gives the length of the y-component (rise) of the
triangle, the cosine gives the length of the x-component (run) and the tangent function gives the slope

(y-component divided by the x-component). Thus it holds that tan(θ) = sin(θ)
cos(θ) . These relationships

are shown in figure 2.10.

sin(θ)

cos(θ)

tan(θ)

Figure 2.10: The unit circle, a ray (θ = 45◦) and the functions sin(θ), cos(θ) and tan(θ).

Trigonometric functions have a wide range of applications including computing unknown lengths and
angles in triangles or modeling periodic phenomena. In figure 2.11 the sine function sin(θ) within the
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model of the unit circle and its function values are presented. It is easy to see that sine is a periodic
function oscillating between -1 and 1.

Figure 2.11: The sine function sin(θ), the unit circle and the graph of the function sin(θ).

For angles greater than 2π or less than −2π the circle is rotated more than once and therefore sine
and cosine are periodic functions with periodicity 2π. To be more exact, the following holds for any
angle θ and integer k:

sin θ = sin(θ + 2πk)

cos θ = cos(θ + 2πk).

The trigonometric functions satisfy a range of identities which make them very powerful in algebraic
calculations. Here is a list of the most important identities.

� Most frequently used is the Pythagorean identity, which states that for any angle, the square of
the sine plus the square of the cosine is 1. In symbolic form, the Pythagorean identity is written
as

sin2 x+ cos2 x = 1.

� Other key relationships are the sum and difference formulas, which give the sine and cosine of
the sum and difference of two angles in terms of sines and cosines of the angles themselves. For
the sine the formulas state

sin(x+ y) = sinx cos y + cosx sin y

sin(x− y) = sinx cos y − cosx sin y.

Similarly for the cosine the following holds

cos(x+ y) = cosx cos y − sinx sin y

cos(x− y) = cosx cos y + sinx sin y.
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� When the two angles are equal, the sum formulas reduce to simpler equations known as the
double-angle formulae.

sin 2x = 2 sinx cosx

cos 2x = cos2 x− sin2 x = 2 cos2 x− 1

2.6.5 Exponential function ex

The exponential function is the function ex, where e is the number

2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 . . .

such that the function ex is its own derivative. The exponential function can be used to model a
relationship in which a constant change in the independent variable gives the same proportional
change (e.g. percentage increase or decrease) in the dependent variable.

The function is often written as exp(x), especially when it is impractical to write the independent
variable as superscript. The graph of the exponential function for real numbers is illustrated in figure
2.12.

−5 −4 −3 −2 −1 0 1 2
0
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8

Figure 2.12: The exponential function exp(x) from -5 to 2.

The exponential function arises whenever a quantity grows or decays at a rate proportional to its
current value. One such situation is continuously compounded interest. Leonhard Euler has proven in
the 18th century that the number

lim
n→∞

(
1 +

1

n

)n

actually exists. It is now known as e.

If a principal amount of 1 earns interest at an annual rate of x compounded monthly, then the interest
earned each month is x

12 times the current value, so each month the total value is multiplied by (1+ x
12),

and the value at the end of the year is (
1 +

x

12

)12
.
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If instead interest is compounded daily this becomes(
1 +

x

365

)365
.

Letting the number of time intervals per year grow without bound leads to the limit definition of the
exponential function

ex = exp(x) = lim
n→∞

(
1 +

x

n

)n
,

first given by Euler. Another very important application of the exponential function stands in the
center of mathematical finance which is the core of our study program, Quantitative Asset and Risk
Management (ARIMA). This is the calculation of continuously compounded rates of return. For a
brief introduction to return calculation, see chapter 4.

The importance of the exponential function in mathematics and sciences stems mainly from the
properties of its derivative (see section 3). In particular,

d

dx
ex = ex.

That is, ex is its own derivative.

2.6.6 Logarithmic functions

The logarithm of a number is the exponent by which another fixed value, the base, has to be raised to
produce that number. For example, the logarithm of 100 to base 10 is 2, because 100 = 102.

More generally, if x = by, then y is the logarithm of x to base b, and is written

y = logb(x).

For example log10(100) = 2.

Logarithms were introduced by John Napier in the early 17th century as a means to simplify calcu-
lations. They were rapidly adopted by scientists, engineers and others to perform computations more
easily using slide rules and logarithm tables. These devices rely on the fact that the logarithm of a
product is the sum of the logarithms of the factors:

logb(xy) = logb(x) + logb(y).

There are three distinct bases for which the logarithm is used often:

� The logarithm to base b = 10 is called the common logarithm and has many applications in
science and engineering. In this text the notation log10(x) for the logarithm to base 10 will be
used. For example log10(10000) = log10(10

4) = 4.

� The logarithm where the base is the Euler constant e is called the natural logarithm. It is
mostly used in mathematics and for the definition of continuously compounded rates of return in
mathematical finance (see section 4.2). In this text the notation log(x) for the natural logarithm
will be used. For example log(e3) = 3.
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� The logarithm to base b = 2 is called the binary logarithm and is used primarily in computer
science. In this text, we will not use the binary logarithm. In literature the notation lb(x) is
most commonly used. For example lb(8) = 3.

The graph of the natural logarithm function for real numbers is shown in figure 2.13.

0 1 2 3 4 5 6 7 8 9 10

−4

−2

0

2

Figure 2.13: The natural logarithm function log(x) for x ∈]0, 10].

It has been shown above that the logarithm of a product is the sum of the logarithms of the numbers
being multiplied. Analogical the logarithm of the ratio of two numbers is the difference of the loga-
rithms. The following listing shows all properties of logarithms regarding to arithmetic operations.

product The logarithm of the product is the sum of the logarithms. In formula:

logb(xy) = logb(x) + logb(y)

quotient The logarithm of the ratio is the difference of the logarithms. In formula:

logb

(
x

y

)
= logb(x)− logb(y)

power The logarithm of x to the power of p is p times the logarithm of x. In formula:

logb(x
p) = p · logb(x)

root The logarithm of the p-root of x is the logarithm of x divided by p. In formula:

logb
p
√
x =

logb(x)

p

Finally the base of the logarithm can be changed. The logarithm logb(x) can be computed from the
logarithms of x and b with respect to an arbitrary base c using the formula

logb(x) =
logc(x)

logc(b)
.
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3 Differentiation

In mathematics the derivative of a function f is a measure of how the function changes as its input
changes. Loosely speaking, a derivative can be thought of as how much one quantity is changing in
response to changes in some other quantity.

The derivative of a function at a chosen input value describes the best linear approximation to the
function near that input value. For a real-valued function with a single variable, the derivative at a
point equals the slope of the tangent line to the function at that point (see figure 3.1).

Figure 3.1: The graph of a function and its tangent line.

The process of finding a derivative is called differentiation. As stated above, differentiation is a me-
thod to compute the rate at which a dependent output y changes with respect to the change in the
independent input x. This rate of change is called the derivative of y with respect to x.

The simplest case is when y is a linear function of x, meaning that the graph y = f(x) in the xy-plane
is a straight line. In this case,

y = f(x) = kx+ d

for k, d ∈ R and the slope k is given by

k =
change in y

change in x
=

∆y

∆x
,

where the symbol ∆ (the uppercase form of the Greek letter Delta) is an abbreviation for ≪change
in≫. This gives the exact value k for the slope of the straight line and subsequently for its derivative.

If the function f is not linear, the change in y divided by the change in x varies as x varies. Differen-
tiation is a method to find an exact value for this rate of change at any given value of x. The idea is
to compute the rate of change as the limit of the ratio of the differences

∆y

∆x
=

f(x+ h)− f(x)

x+ h− x
=

f(x+ h)− f(x)

h
,

as ∆x (or h respectively) becomes infinitely small.
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3 Differentiation

Figure 3.2: The graph of a function and a secant line to that function.

In figure 3.2 the graph of a function and its secant line are shown. As h becomes infinitely small, the
secant line becomes the tangent line. Its slope is the derivative of the function at x.

In Leibniz’s notation, such an infinitesimal change in x is denoted by dx, and the derivative of y with
respect to x is written

dy

dx
,

suggesting the ratio of two infinitesimal quantities. The expression is read as ≪the derivative of y with
respect to x≫ or ≪dy over dx≫.

Simultaneously with Leibniz, the English mathematician and physicist Newton has developed the
concept of differentiation in the 17th century. He developed a slightly different notation where the
difference quotient is defined as

∆f(x)

∆x
=

f(x+ h)− f(x)

h
.

The derivative is the value of the difference quotient as h becomes infinitesimally small.

3.1 Continuity and differentiability

For a function f to have a derivative at point a, it is necessary for the function f to be continuous at
a (see section 2.3.3), but continuity alone is not sufficient. For example, the absolute value function
f(x) = |x| is continuous at x = 0, but is not differentiable there (see figure 3.3).

In the graph of the function in the xy-plane this can be seen as a ≪kink≫ or a ≪cusp≫ in the graph
at x = 0. The derivative does not exist at x = 0 as the tangent line at this point is not unique.

Let f be a differentiable function, and let f ′(x) be its derivative. The derivative of f ′(x) - if it has
one - is written f ′′(x) and is called the second derivative of f . Similarly the derivative of a second
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Figure 3.3: The function f(x) = |x|. It is not differentiable at x = 0.

derivative is written f ′′′(x) and is called the third derivative of f . These repeated derivatives are called
higher-order derivatives.

A function that has infinitely many derivatives is called infinitely differentiable or smooth. For example,
every polynomial function is infinitely differentiable (see section 2.6.1).

3.2 Computing the derivative

In theory the derivative of a function can be computed from the definition by considering the difference
quotient and computing its limit. In practice the derivatives are computed using rules for obtaining
derivatives of complicated functions from simpler ones.

3.2.1 Differentiation is linear

For any functions f(x) and g(x) and any real numbers a, b and c, the derivative of the function
h(x) = a · f(x) + b · g(x) + c with respect to x is

h′(x) = a · f ′(x) + b · g′(x).

Special cases include

� the constant multiple rule
(a · f(x))′ = a · f ′(x)

� the sum rule
(f(x) + g(x))′ = f ′(x) + g′(x)
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3 Differentiation

� the subtraction rule
(f(x)− g(x))′ = f ′(x)− g′(x)

� the constant rule
(f(x) + c)′ = f ′(x)

3.2.2 The product rule

For the functions f(x) and g(x), the derivative of the function h(x) = f(x) · g(x) with respect to x
is

h′(x) = f ′(x) · g(x) + f(x) · g′(x).

3.2.3 The quotient rule

For the functions f(x) and g(x), the derivative of the function h(x) = f(x)
g(x) with respect to x is

h′(x) =

(
f(x)

g(x)

)′
=

f ′(x) · g(x)− g′(x) · f(x)
g(x)2

whenever g(x) is nonzero.

3.2.4 The chain rule

The derivative of the function of a function h(x) = f(g(x)) (or h(x) = f ◦g(x) respectively, see section
2.4.2) with respect to x is

h′(x) = f ′(g(x)) · g′(x).

3.2.5 The elementary and the generalized power rule

If f(x) = xr and r ∈ R \ {0}
f ′(x) = rxr−1.

If r = 0 then the function f is a constant function and its derivative equals 0.

The most general power rule is the functional power rule. For any functions f(x) and g(x),(
f(x)g(x)

)′
=

(
eg(x)·log(f(x))

)′
= f(x)g(x) ·

(
f ′(x)

g(x)

f(x)
+ g′(x) · log(f(x))

)
,

where both sides are well defined.
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3.2.6 Derivatives of exponential and logarithmic functions

The exponential function is its own derivative (see section 2.6.5), therefore

(ex)′ = ex.

For the logarithmic function the following holds

(logc x)
′ =

1

x log c
, c > 0, c ̸= 1, x ̸= 0

and

(log x)′ =
1

x
, x ̸= 0.

Furthermore

(log |x|)′ = 1

x
and (xx)′ = xx(1 + log x)

holds as well. By applying the chain rule it can be stated that

(log f)′ =
f ′

f
wherever f is positive.

3.2.7 Derivatives of trigonometric functions

The most important trigonometric functions were introduced in section 2.6.4. Their derivatives are

(sinx)′ = cosx,

(cosx)′ = − sinx,

(tanx)′ =
1

cos2 x
= 1 + tan2 x.

Examples

1. The derivative of
f(x) = 4x7

is
f ′(x) = 4 · 7x6 = 28x6.

2. The derivative of
f(x) = 3x8 + 2x+ 1

is
f ′(x) = 3 · 8x7 + 2x0 = 24x7 + 2.
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3 Differentiation

3. The derivative of
f(x) = 2

√
x = 2x

1
2

is

f ′(x) = 2 · 1
2
x−

1
2 =

1√
x
.

4. The derivative of
f(x) = (x+ 1)(x2 − x+ 1)

using the product rule is

f ′(x) = x0 · (x2 − x+ 1) + (x+ 1)(2x− 1x0)

= x2 − x+ 1 + (x+ 1)(2x− 1) = 3x2.

5. The derivative of

f(x) =
2x+ 4

x2 + 1

using the quotient rule is

f ′(x) =
2(x2 + 1)− 2x(2x+ 4)

(x2 + 1)2
= −2

x2 + 4x− 1

(x2 + 1)2
.

6. The derivative of

f(x) = sin

(
1

x2

)
using the chain rule is

f ′(x) = cos

(
1

x2

)
· (−2x−3) = − cos

(
1

x2

)
2

x3
.

7. The derivative of
f(x) = log 5x

is

f ′(x) =
5

5x
=

1

x
.

8. The derivative of
f(x) = x3ecosx

using the product rule and the chain rule is

f ′(x) = 3x2ecosx − x3 sinxecosx.
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4 Rate of return calculation

The rate of return expresses the profit, respectively loss, as a percentage of the original value of the
asset. It measures by what percentage the original value changed.

4.1 Discrete rate of return

The discrete rate of return R on an asset (alternatively called simple rate of return or periodically
compounded rate of return) is calculated as

R =
St2 − St1

St1

=
St2

St1

− 1,

where St1 and St2 are prices of an asset at different points in time t1 and t2, where t1 < t2. Hence R
represents a T -period discrete rate of return, where T = t2 − t1.

In order to be able to compare rates of return that are calculated over different time periods, the rates
of return are typically annualised. The annualised discrete rate of return Rann is calculated from the
T -period rate of return R as

Rann = (1 +R)
1/T − 1.

A T -period rate of return R is calculated from an annualised rate of return Rann as

R = (1 +Rann)T − 1.

The value at t2 of an investment in a specific asset at time t1 is

Vt2 = Vt1 · (1 +R) = Vt1 · (1 +Rann)T ,

where Vt1 and Vt2 represent the value of the investment at time t1 and t2, respectively.

Examples

Example 4.1 Consider the price information for four stocks, given in table 4.1.

Assume we want to calculate the T -period discrete rate of return R, the annualized discrete rate of
return Rann and the value of an original investment of e 10 000 in 2019 for all assets as of January
1st, 2021.

For Stock 1 we get:
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4 Rate of return calculation

Asset Stock 1 Stock 2 Stock 3 Stock 4

Price on January 1st, 2019 (St1) 100e 67e 3 486e 587e
Price on January 1st, 2021 (St2) 110e 69e 3 674e 203e

Table 4.1: Prices for four stocks on two dates for example 4.1.

� a 2-year discrete rate of return:

R1 =
110

100
− 1 = 10%.

� an annualized discrete rate of return:

Rann
1 = 1.1

1/2 − 1 = 4.881%.

� a value on January 1st, 2021:

1V2016 = 10 000 · 1.048812 = 11 000e.

For Stock 2 we get:

� a 2-year discrete rate of return:

R2 =
69

67
− 1 = 2.985%.

� an annualized discrete rate of return:

Rann
2 = 1.02985

1/2 − 1 = 1.482%.

� a value on January 1st, 2021:

2V2016 = 10 000 · 1.014822 = 10 298.51e.

For Stock 3 we get:

� a 2-year discrete rate of return:

R3 =
3674

3 486
− 1 = 5.393%.

� an annualized discrete rate of return:

Rann
3 = 1.05393

1/2 − 1 = 2.661%.

� a value on January 1st, 2021:

3V2016 = 10 000 · 1.026612 = 10 539.30e.
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4 Rate of return calculation

For Stock 4 we get:

� a 2-year discrete rate of return:

R4 =
203

587
− 1 = −65.417%.

� an annualized discrete rate of return:

Rann
4 = 0.34583

1/2 − 1 = −41.193%.

� a value on January 1st, 2021:

4V2016 = 10 000 · 0.588072 = 3458.26e.

Example 4.2 Consider the price information for four stocks, given in table 4.2.

Asset Stock 1 Stock 2 Stock 3 Stock 4

Price on November 30th, 2020 (St1) 107e 68e 3 681e 242e
Price on December 17th, 2020 (St2) 109e 70e 3 682e 199e

Table 4.2: Prices for four stocks on two dates for example 4.2.

Assume we want to calculate the T -period discrete rate of return R, the annualized discrete rate of
return Rann and the value of an original investment of e 10 000 on November 30th, 2020 for all four
assets as of December 17th, 2020.

The time period T is 17 days, corresponding to T = 17/365 = 0.04657534 years.

For Stock 1 we get:

� a 17/365-year discrete rate of return:

R1 =
109

107
− 1 = 1.869%.

� an annualized discrete rate of return8:

Rann
1 = 1.01869

365
17 − 1 = 48.827%.

� a value on December 17th, 2020:

1Vt2 = 10 000 · 1.48827
17
365 = 10 186.92e.

8Please note that
1
17
365

=
365

17
.
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4 Rate of return calculation

For Stock 2 we get:

� a 17/365-year discrete rate of return:

R2 =
70

68
− 1 = 2.941%.

� an annualized discrete rate of return:

Rann
2 = 1.02941

365
17 − 1 = 86.336%.

� a value on December 17th, 2020:

2Vt2 = 10 000 · 1.86336
17
365 = 10 294.12e.

For Stock 3 we get:

� a 17/365-year discrete rate of return:

R3 =
3682

3 681
− 1 = 0.027%.

� an annualized discrete rate of return:

Rann
3 = 1.00027

365
17 − 1 = 0.585%.

� a value on December 17th, 2020:

3Vt2 = 10 000 · 1.00585
17
365 = 10 002.72e.

For Stock 4 we get:

� a 17/365-year discrete rate of return:

R4 =
199

242
− 1 = −17.769%.

� an annualized discrete rate of return:

Rann
4 = 0.82231

365
17 − 1 = −98.501%.

� a value on December 17th, 2020:

4Vt2 = 10 000 · 0.01499
17
365 = 8223.14e.
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4 Rate of return calculation

4.2 Continuously compounded rate of return

The continuously compounded rate of return r on an investment (alternatively called log-return) is
mostly used in financial models. It is calculated as

r = log(St2)− log(St1) = log

(
St2

St1

)
,

where log( · ) is the natural logarithm (compare section 2.6.6) and St1 and St2 are prices of an
asset at different points in time t1 and t2, where t1 < t2. Hence r represents a T -period continuously
compounded rate of return, where T = t2 − t1.

The annualized continuously compounded rate of return rann is calculated from the T -period rate of
return r as

rann =
r

T
.

A T -period rate of return r is calculated from an annualized rate of return rann as

r = rann · T.

The value at t2 of an investment in a specific asset at time t1 is

Vt2 = Vt1 · er = Vt1 · er
ann·T ,

where Vt1 and Vt2 represent the value of the investment at time t1 and t2, respectively. e is the Euler’s
number, which was introduced in section 2.6.5.

Examples

Example 4.3 Consider the price information for four stocks, given in table 4.3.

Asset Stock 1 Stock 2 Stock 3 Stock 4

Price on January 1st, 2019 (St1) 100e 67e 3 486e 587e
Price on January 1st, 2021 (St2) 110e 69e 3 674e 203e

Table 4.3: Prices for four stocks on two dates for example 4.3.

Assume we want to calculate the T -period continuously compounded rate of return r, the annualized
continuously compounded rate of return rann and the value of an original investment of e 10 000 in
2019 for all four assets as of January 1st, 2021.

For Stock 1 we get:

� a 2-year continuously compounded rate of return:

r1 = log

(
110

100

)
= 9.531%.
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4 Rate of return calculation

� an annualized continuously compounded rate of return:

rann1 = 0.09531 · 1
2
= 4.766%.

� a value on January 1st, 2021:

1V2016 = 10 000 · e0.04766·2 = 11 000e.

For Stock 2 we get:

� a 2-year continuously compounded rate of return:

r2 = log

(
69

67

)
= 2.941%.

� an annualized continuously compounded rate of return:

rann2 = 0.02941 · 1
2
= 1.471%.

� a value on January 1st, 2021:

2V2016 = 10 000 · e0.01471·2 = 10 298.51e.

For Stock 3 we get:

� a 2-year continuously compounded rate of return:

r3 = log

(
3 674

3 486

)
= 5.253%.

� an annualized continuously compounded rate of return:

rann3 = 0.05253 · 1
2
= 2.626%.

� a value on January 1st, 2021:

3V2016 = 10 000 · e0.02626·2 = 10 539.30e.

For Stock 4 we get:

� a 2-year continuously compounded rate of return:

r4 = log

(
203

587

)
= −106.182%.
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� an annualized continuously compounded rate of return:

rann4 = −1.06182 · 1
2
= −53.091%.

� a value on January 1st, 2021:

4V2016 = 10 000 · e−0.53091·2 = 3458.26e.

Example 4.4 Consider the price information for for stocks, given in table 4.4.

Asset Stock 1 Stock 2 Stock 3 Stock 4

Price on November 30th, 2020 (St1) 107e 68e 3 681e 242e
Price on December 17th, 2020 (St2) 109e 70e 3 682e 199e

Table 4.4: Prices for four stocks on two dates for example 4.4.

Assume we want to calculate the T -period continuously compounded rate of return r, the annualized
continuously compounded rate of return rann and the value of an original investment of e 10 000 on
November 30th, 2020 for all assets as of December 17th, 2020.

The time period T is 17 days, corresponding to T = 17/365 = 0.04657534 years.

For Stock 1 we get:

� a 17/365-year continuously compounded rate of return:

r1 = log

(
109

107

)
= 1.852%.

� an annualized continuously compounded rate of return:

rann1 = 0.01852 · 365
17

= 39.761%.

� a value on December 17th, 2020:

1Vt2 = 10 000 · e0.39761·
17
365 = 10 186.92e.

For Stock 2 we get:

� a 17/365-year continuously compounded rate of return:

r2 = log

(
70

68

)
= 2.899%.

� an annualized continuously compounded rate of return:

rann2 = 0.02899 · 365
17

= 62.238%.
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� a value on December 17th, 2020:

2Vt2 = 10 000 · e0.62238·
17
365 = 10 294.12e.

For Stock 3 we get:

� a 17/365-year continuously compounded rate of return:

r3 = log

(
3 682

3 681

)
= 0.027%.

� an annualized continuously compounded rate of return:

rann3 = 0.00027 · 365
17

= 0.583%.

� a value on December 17th, 2020:

3Vt2 = 10 000 · e0.00583·
17
365 = 10 002.72e.

For Stock 4 we get:

� a 17/365-year continuously compounded rate of return:

r4 = log

(
199

242

)
= −19.563%.

� an annualized continuously compounded rate of return:

rann4 = −0.19536 · 365
17

= −420.035%.

� a value on December 17th, 2020:

4Vt2 = 10 000 · e−4.20035· 17
365 = 8223.14e.

4.3 The relationship between discrete and continuously compounded
rate of return

A continuously compounded rate of return is calculated from a discrete rate of returns as

r = log(1 +R)

and a discrete rate of return is calculated from a continuously compounded rate of return as

R = er − 1.
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4 Rate of return calculation

If, for example, the discrete rate of return is 10%, R = 10%, the corresponding continuously compoun-
ded rate of return is r = log(1.1) = 9.531%. We may verify that e0.09531 − 1 = 10%. As a matter of
fact r ≤ R holds in all cases.

A total loss of the investment (if the value of the invested amount corresponds to zero, Vt2 = 0)
corresponds to R = −100% and r = −∞.

Figure 4.1 shows the relationship between these two definitions of returns. The figure shows the
resulting returns for an investment with Vt1 = 100 and different end-values Vt2 .
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Figure 4.1: The relationship between continuously compounded and discrete returns.
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5 Descriptive statistics

Descriptive statistics is the study of collection, organization, analysis and interpretation of data.
It deals with all aspects of this, including the planning of data collection in terms of surveys and
experiments. Statistical methods can be used to summarize and describe a collection of data.

5.1 Basic concepts of descriptive statistics

The set on which descriptive statistics is usually applied is called the population or the sample,
depending on the size of the set. The term statistical characteristics denotes the entities we actually
want to measure and analyse. The following sections provide a short overview on the most important
basic concepts of descriptive statistics.

5.1.1 Population

For applying statistics to a problem it is necessary to begin with a population to be studied. In general,
a population consists of all elements - individuals, items or objects - whose characteristics we wish to
study.

Examples for populations

� The ballots of every person who voted in a given election.

� The sex of every persons of a country.

� The electric charge of every atom composing a crystal.

� Price of gasoline at every petrol station in a country.

5.1.2 Sample

A sample is a selection or a subset of entities we can actually study from within a population. This
may be used to estimate characteristics of the whole population. A sample can also be composed
of observations of a process at various points in time, with data from each observation serving as
a different member of the overall group. Data collected this way constitutes what is called a time
series.
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Usually, an entire population cannot be surveyed because the cost of a census is too high. The main
advantages of sampling are that

1. the costs are lower,

2. data collection is faster,

3. studying the population is not practical,

4. if the object of interest is defined as a time series, data for the whole population cannot be
collected as we would need observations for all points in time.

Examples for samples

� The ballots of 5000 voters in a given election.

� The returns of a given stock during 2008 - 2018.

� Prices of 50 petrol stations in a country.

5.1.3 Statistical characteristics and their attributes

When the population and the sampling process are specified, the entities for statistical investigation
are fixed. The set of all entities in the population is usually denoted as Ω. Examples are voters,
manufactured products or stocks.

Next the statistical characteristic, the object of statistical investigation, has to be specified. For this
script we denote the set of statistical characteristics as S. Examples are the vote, exact dimension of
the product or prices of a stock at certain points in time.

Finally the statistical attributes, the individual values of a statistical characteristic, can be described.
The statistical attributes comprise of all elements of the set S. Examples are S = {SPÖ, ÖVP, . . .},
S = {2.1243cm, 2.1245cm , . . .} and S = {e 75,e 77, . . .}.

Summarizing, the model used for statistical investigations can be formally described as a function
where every element of the population ω ∈ Ω is mapped to its measurable statistical attribute s.

X : Ω → S
ω 7→ s.

The set of statistical characteristics can be classified as qualitative or quantitative characteristics.

Qualitative statistical characteristics

If a sample is measured using qualitative characteristics, the statistical sample cannot directly be mea-
sured with numbers. Within qualitative statistical characteristics two concepts can be distinguished,
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namely nominal and ordinal characteristics.

1. A nominal characteristic is measured on a nominal scale. Within such a scale, there is no
hierarchy of attributes and the distance between the attributes cannot be interpreted.

Therefore nominal characteristics only allow qualitative classification. The elements under in-
vestigation are measured in terms of whether the individual item belongs to some distinctive
category, but these categories cannot be quantified or ordered.

Examples for nominal characteristics
Eye color, occupation, religious affiliation, name of the stock exchange of an equity share.

2. An ordinal characteristic is measured on a so-called ordinal scale. For this scale, there is a
hierarchy of attributes, but the distance between the attributes cannot be interpreted.

Therefore an ordinal characteristic allows one to rank measured items in terms of which has
less and which has more of the quality represented by the characteristic, but there is no reliable
information about ≪how much more≫.

Examples for ordinal characteristics
Drinking habit, level of education, grades, rating of a company.

Quantitative statistical characteristics

The attributes of a quantitative characteristic are characterized by their magnitude. In these cases there
is a hierarchy of the attributes (in this case values) and the distance between them can be interpreted
meaningfully. Depending on the values an attribute can have, two types can be distinguished.

1. A discrete characteristic may possess only certain distinct attributes. The number of values can
be finite or countably infinite. Most of the time, the set of a discrete quantitative characteristic
is a subset of the natural numbers, formally S ⊆ N.

Examples for discrete characteristics
Number of bad items in a sample, monthly income in e, number of employees of a company.

2. A continuous characteristic may possess at least theoretically any value within an interval. In
general the set of such a statistical characteristic S is a subset of the real numbers, formally
S ⊆ R.

Examples for continuous characteristics
Temperature, length, daily return of a stock.
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5.2 Distribution analysis

For this section we concentrate on a statistical model with a finite set of statistical characteristics. We
have a sample (or population) that contains n observations (or elements of the population). The set
of all statistical characteristics S is a finite set containing k attributes aj , j = 1, 2, . . . , k.

We get

X : Ω → S = {a1, a2, . . . , ak}
ω 7→ aj

5.2.1 Absolute and relative frequencies

The absolute frequency of an attribute aj , j = 1, . . . , k is defined as

F(aj) = ≪Number of cases in which aj occurs≫ = naj .

The relative frequency of an attribute aj , j = 1, . . . , k is defined as

f(aj) =
1

n
· F(aj).

Important properties of absolute and relative frequencies are

1. The absolute frequency of any attribute is less than or equal to the number of observations,

0 ≤ F(aj) ≤ n for all j = 1, . . . , k.

2. The relative frequency of any attribute is less than or equal to 1 (or 100%),

0 ≤ f(aj) ≤ 1 for all j = 1, . . . , k.

3. The sum of all absolute frequencies of all attributes equals the number of observations n,

k∑
j=1

F(aj) = n.

4. The sum of all relative frequencies of all attributes equals 1 (or 100%),

k∑
j=1

f(aj) = 1.
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Based on the calculation of frequencies, a frequency distribution can be defined. The sequence

(F(a1),F(a2), . . . ,F(ak))

is called the absolute frequency distribution.

Analogously, the sequence
(f(a1), f(a2), . . . , f(ak))

is called the relative frequency distribution.

Example for the calculation of frequencies of grades
Let X : Ω → S be the statistical model which assigns a grade in a given exam to all students. Therefore
the set Ω is the set of all students, while the set S consists of all possible grades9, S = {1, 2, 3, 4, 5}.

Clearly, each grade can occur several times within a given sample. The number of students who
received a certain grade, is the absolute frequency of this grade. The relative proportion of students
who received a certain grade is the relative frequency of this grade.

Example for absolute and relative frequencies
Let X : Ω → S be a statistical model for the Austrian real GDP growth10. For the sake of simplicity
we consider rounded values. The data is presented in table 5.1.

year
Austria real GDP

growth in %
(rounded values)

2007 4
2008 2
2009 -4
2010 2
2011 3
2012 1
2013 0
2014 1
2015 1
2016 2
2017 3

Table 5.1: Rounded values for the Austrian real GDP growth since 2007 (in %).

The data starts 2007, contains 11 data points with 6 different values. Therefore

n = 11 and k = 6.

The absolute and relative frequencies for this data set are presented in table 5.2.

9The Austrian grade system is used for this example.
10Source of the data: Statistik Austria. Wachstum des Bruttoinlandsprodukts (BIP) in Österreich in den Jahren

2007 bis 2017 (gegenüber dem Vorjahr). Statista, de.statista.com/statistik/daten/studie/14530/umfrage/

wachstum-des-bruttoinlandsprodukts-in-oesterreich/
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aj F(aj) f(aj)

-4 1 0.091
0 1 0.091
1 3 0.273
2 3 0.273
3 2 0.182
4 1 0.091∑

11 1.000

Table 5.2: Absolute and relative frequencies for the Austrian real GDP growth given in table 5.1.

5.2.2 Visualization of a frequency distribution

There are several ways to visualize frequency distributions. In this section the most important methods
are presented.

Bar charts

A bar chart depicts the frequencies by a series of bars. Absolute or relative frequencies can be depicted
(see figure 5.1 for a bar chart of the absolute frequencies F(aj)).
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Figure 5.1: Bar chart of the absolute frequencies for the Austrian real GDP growth rates.

A common term for a bar chart of the frequency distribution is histogram. For many applications
a histogram combines a bar chart of the relative frequency distribution with the probability density
function of a normal distribution11 with same mean and standard deviation as the given data.

Figure 5.2 shows the relative frequencies of the data given in table 5.1 combined with a normal
distribution with the same mean and standard deviation as red line.

11For the definition of normal distributions see chapter 6.6.4.
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Figure 5.2: Histogram for Austrian real GDP growth combined with a normal distribution.

Polygons

A frequency polygon is a simple line graph of the relative or absolute frequency distribution. See figure
5.3 for a relative frequency line chart the data given in table 5.1.
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Figure 5.3: Line chart of the relative frequencies for the Austrian real GDP growth rates.

The frequency distribution charts with bars or polygons allow us to describe the frequency distribution
in terms of the symmetry of the data (skewness, see section 5.2.3) and dispersion of the data (kurtosis,
see section 5.2.4).

Pie charts

A pie chart is a pie-shaped figure in which pieces of the pie represent the relative frequencies. See
figure 5.4 for a relative frequency pie chart for the data given in table 5.1.
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Figure 5.4: Pie chart for the relative frequencies of the Austrian real GDP growth since 2007.

5.2.3 Skewness

In terms of skewness, a frequency curve can be

positively skewed The curve is nonsymmetric with the ≪tail≫ to the right. See the blue distribution
curve on the right of figure 5.5.

symmetrical The curve is symmetric. See the black distribution curve at the center of figure 5.5.

negatively skewed The curve is nonsymmetric with the ≪tail≫ to the left. See the red distribution
curve on the left of figure 5.5.

symmetricpositively skewed negatively skewed

Figure 5.5: The different forms of frequency curves in terms of skewness.

Karl Pearson suggested a simple calculation as a measure of skewness (sometimes denoted as Pearson’s

52



5 Descriptive statistics

median). He defined the skewness coefficient S as12

S =
3 ·

(
X −Me

)
s

, where − 3 ≤ S ≤ 3.

Example for the calculation of the skewness coefficient
The skewness coefficient S of the Austrian real GDP growth data presented in table 5.1 is

S =
3 · (1.364− 2.0)

2.111
= −0.905.

As can be seen easily, the data given in table 5.1 is moderately negatively skewed.

5.2.4 Kurtosis

In terms of kurtosis, a frequency curve can be

mesokurtic The curve is neither flat nor peaked in terms of the distribution of observed values. The
frequency distribution curve is similar to the probability density function of a normal distributed
random variable (see chapter 6.6.4). Compare type A in figure 5.6.

leptokurtic The curve is peaked with the observations concentrated within a narrow range of values.
See type B in figure 5.6.

platykurtic The curve is flat as the observations in the data are scattered heavily. An example is
shown in type C in figure 5.6.

Figure 5.6: The different forms of frequency curves in terms of kurtosis.

12The measures of location arithmetic mean X and median Me are defined in section 5.5. The definition of the standard
deviation s can be found in section 5.6.
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5.3 Cumulative absolute and relative frequencies

Additionally to the absolute and relative frequency distribution the cumulative distribution can be of
interest. The cumulative frequency distribution visualises the number of values or percentage of values
equal to or below a distinct attribute aj .

Formally, the cumulative absolute frequency of the attribute aj for j = 1, . . . , k is defined as

F(a1) + F(a2) + . . .+ F(aj) =

j∑
i=1

F(ai), j = 1, . . . , k.

Similarly, the cumulative relative frequency of the attribute aj for j = 1, . . . , k is defined as

f(a1) + f(a2) + . . .+ f(aj) =

j∑
i=1

f(ai), j = 1, . . . , k.

Continued example with data given in table 5.1
The cumulative absolute and relative frequencies for the rounded values of the Austrian real GDP
growth data given in table 5.1 are presented in table 5.3.

j aj F(aj) f(aj)
∑j

i=1F(ai)
∑j

i=1 f(ai)

1 -4 1 0.091 1 0.091
2 0 1 0.091 2 0.182
3 1 3 0.273 5 0.455
4 2 3 0.273 8 0.727
5 3 2 0.182 10 0.909
6 4 1 0.091 11 1.000

Sum 11 1.000

Table 5.3: Absolute and relative frequencies combined with their cumulative frequencies calculated for
the Austrian real GDP growth rates since 2007.

A polygon plot of the cumulative absolute or relative frequencies is denoted as ogive. An ogive shows
the values of the data set on the horizontal axis and either the cumulative absolute frequencies or
the cumulative relative frequencies on the vertical axis. In figure 5.7 an ogive with cumulative relative
frequencies is shown.

5.4 Empirical distribution function

The empirical distribution function, or empirical CDF, is the cumulative distribution function associa-
ted with the empirical measure derived from the sample. This function is a step function that jumps
up by 1/n at each of the n data points.
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Figure 5.7: An ogive for cumulative relative frequencies for the rounded values if Austrian real GDP
growth rates since 2007.

The empirical cumulative distribution function can be used as an estimate for the true underlying
cumulative distribution function (CDF) of the stochastic data set (for the definition of a cumulative
distribution function F see section 6.1).

The empirical CDF F̂ is defined as follows

F̂ (x) =
number of elements in the sample with attributes aj smaller or equal to x

n

=


0 for x < a1∑j

i=1 f(ai) for aj ≤ x < aj+1

1 for x ≥ ak.

The empirical cumulative distribution function fulfills some important properties.

1. The empirical CDF describes the proportion of values in the sample which are smaller than a
distinct value x. Formally

F̂ (x) = P(X ≤ x) (P : proportion)

2. The empirical CDF always lies between 0 and 1. Formally

0 ≤ F̂ (x) ≤ 1 for all x

3. The empirical CDF is a monotonically increasing function. Formally

for all x1, x2 : x1 < x2 ⇒ F̂ (x1) ≤ F̂ (x2)

4. The empirical CDF can be used to calculate the proportion of values within a certain half-open
interval ]x1, x2].

P(x1 < X ≤ x2) = F̂ (x2)− F̂ (x1)
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5. F̂ (x) is at least right-sided continuous and has at most a finite number of jump discontinuities.

6. All empirical CDFs approach 0 as x → −∞ and 1 as x → ∞.

Example for an empirical CDF as chart and table
The empirical CDF can be represented in different ways. In figure 5.8 the empirical cumulative distri-
bution function for the Austrian real GDP growth rates given in table 5.1 is shown. The circles denote
that the corresponding points are excluded and the filled points are included in the graph.
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Figure 5.8: Empirical cumulative distribution function F̂ (x) for the rounded values of Austrian real
GDP growth rates since 2007.

Additionally, the empirical CDF can be represented in tabular form. Thereby the domain of the
function is divided in half-open intervals and the function value can be specified for each interval.
Table 5.4 shows the empirical CDF for the Austrian real GDP growth rates.

Interval for x F̂ (x)

]−∞,−4[ 0.000
[−4, 0[ 0.091
[0, 1[ 0.182
[1, 2[ 0.455
[2, 3[ 0.727
[3, 4[ 0.909

[4,+∞[ 1.000

Table 5.4: Empirical cumulative distribution function F̂ for Austrian real GDP growth rates since
2007 in tabular form.

Example for the interpretation of the values of the empirical CDF
The empirical CDF allows the following calculations and interpretations.

1. The value of the empirical CDF at 2.2 is

F̂ (2.2) = 0.727.
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This can be interpreted as 72.7% of the rounded values of Austrian real GDP growth rates since
2007 are less than or equal to 2.2.

2. The value of the difference of the empirical CDF at 3 and 0.5 can be used to calculate the
probability of the real GDP growth rates lying between 0.5 and 3.0. We get

F̂ (3)− F̂ (0.5) = 0.909− 0.182 = 0.727.

Therefore about 73% of the Austrian real GDP growth rates lie between 0.5 and 3.0.

5.5 Measures of location

5.5.1 Arithmetic mean

The arithmetic mean, or simply the mean when the context is clear, is a measure for the central
tendency of a collection of values. It is calculated as the sum of the values divided by the size of the
collection. Let

xi, i = 1, . . . , n

be the observed values of a variate having the attributes

aj , j = 1, . . . k.

If values for the whole population of size N are known, the mean is called the population mean. It is
denoted as µ and is calculated as

µ =
1

N

N∑
i=1

xi =
1

N

k∑
j=1

aj · F(aj)

and therefore is a simple arithmetic mean of population data.

If observed values consist of a sample, the mean is called the sample mean. We denote it as µ̂ (sometimes
denoted as X) and calculate it as arithmetic mean of the sample data as in

µ̂ =
1

n

n∑
i=1

xi =
1

n

k∑
j=1

aj · F(aj).

The arithmetic mean fulfills the following properties:

1. The arithmetic mean of data which has been linearly transformed by its arithmetic mean is
always 0. Formally

n∑
i=1

(xi − µ̂) = 0.
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2. The arithmetic mean is the best measurement of the central tendency of the data in terms of
least squares. Formally

for all a ∈ R it holds that

n∑
i=1

(xi − µ̂)2 ≤
n∑

i=1

(xi − a)2 .

3. Given a linear transformation of the data set as in

x∗i = α+ β · xi for i = 1, . . . , n and α, β ∈ R,

we obtain
µ̂∗ = α+ β · µ̂.

Example for the calculation of the sample mean
The sample mean for the Austrian real GDP growth data presented in table 5.1 is

µ̂ =
1

11

11∑
i=1

xi =
15

11
= 1.364.

5.5.2 Median

The median is the numerical value separating the higher half of a sample or a population from the
lower half. The median of a finite list of numbers can be found by arranging all the observations from
lowest value to highest value and picking the middle one.

If there is an even number of observations, then there is no single value in the middle. The median is
then usually defined to be the mean of the two middle values. Formally, the median of a data set is
defined by

Me =

 x[n+1
2 ] if n is odd

1
2

(
x[n2 ]

+ x[n2+1]

)
if n is even.

Here [·] denotes the position of the observation in the arranged (ascending or descending) data set.

Example for the calculation of the median
The median for the Austrian real GDP growth rate data presented in table 5.1 is

Me = 2.

5.5.3 α-quantile

Quantiles are points taken at regular intervals from the cumulative distribution function (CDF) of a
random variable (see section 6) or the corresponding empirical CDF of a data set. Dividing ordered
data into 1

α essentially equal-sized data subsets is the motivation for α-quantiles. The quantiles are
the data values marking the boundaries between consecutive subsets.
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Put in another way, the kth α-quantile for a random variable is the value x such that the probability
that the random variable will be less than x is at most

k · α

and the probability that the random variable will be more than x is at most

1− k · α.

For a ranked data set, the α-quantile (0 < α < 1) is defined by

x̃α =

{
x[k] if n · α is not an integer (then k is the following integer)
1
2

(
x[k] + x[k+1]

)
if n · α is integer (k = nα)

In many applications the lower and upper quartiles are used. Usually the 25% quantile is called lower
(first) quartile and the 75% quartile is called upper (third) quartile respectively.

Example for the calculation of a 25% quantile
When calculating the 25% quantile for the Austrian real GDP growth rates presented in table 5.1 we
get:

11 · 25% = 11 · 0.25 = 2.75.

As n ·α is not an integer we search for the data point in the sorted data set at the position x̃[k] = x̃[3].
This is

x̃[3] = 1.

5.5.4 Mode

The mode is the number that appears the most often in a set of numbers. In other words, the mode
of a data set is the statistical attribute with the highest absolute frequency. Usually it is denoted as
Mo. Like the mean (see section 5.5.1) and median (see section 5.5.2), the mode is a way of expressing,
in a single number, a measurement of the central tendency of the data set.

The numerical value of the mode is usually different from those of the mean and median and may
be very different for strongly skewed distributions. The mode of a discrete probability distribution
(compare section 6.2) is the value x at which its probability mass function has its maximum value.
Informally speaking, the mode is at the peak.

The mode is not necessarily unique, since the same maximum frequency may be attained at diffe-
rent values. The most extreme case occurs in uniform distributions, where all values occur equally
frequently.

Example for the determination of the mode
The mode for the Austrian real GDP growth rates given in table 5.1 is not unique as the values 1 and
2 both occur 3 times. We get

Mo = 1 or Mo′ = 2.
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5.5.5 Relationship among mean, median and mode

The information about mean, median and mode allows us to determine some properties of the sample
distribution or population distribution respectively. Among other properties the skewness (see section
5.2.3) of the distribution can be identified.

Figure 5.9: The values of mean, median and mode for three possibilities the distribution of a sample
or a population.

In figure 5.9 three possibilities are presented:

1. For a symmetric frequency distribution curve with one peak, the values of the mean, median and
mode are identical. They lie in the centre of the distribution. This is displayed in the image in
the center of figure 5.9.

2. For a frequency distribution curve skewed to the right, the value of the mean is the largest, that
of the mode is the smallest and the value of the median lies between the two. This is displayed
in the right image of figure 5.9.

3. If a frequency distribution curve is skewed to the left, the value of the mean is the smallest and
that of the mode is the largest with the value of the median lying between these two. This is
displayed in the left image of figure 5.9.

5.5.6 Geometric mean

The geometric mean is a type of mean or average, which indicates the central tendency or typical
value of a set of numbers. A geometric mean is often used when comparing different items - finding a
single ≪figure of merit≫ for these items - when each item has multiple properties that have different
numeric ranges.

The geometric mean is similar to the arithmetic mean (see section 5.5.1), except that the numbers
are multiplied and then the nth root (n is the size of the data set) of the resulting product is taken.
It only works for data sets containing only positive numbers and no zeros.
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Formally, for the sample of size n the geometric mean is defined as

Xg = n
√
x1 · x2 · . . . · xn = n

√√√√ n∏
i=1

xi, xi > 0 for all i = 1, . . . , n.

Example of usage of the geometric mean
The geometric mean can give a meaningful ≪average≫ to compare two companies which are each rated
at 1 to 5 for their environmental sustainability and are rated at 1 to 100 for their financial viability.

If an arithmetic mean is used instead of a geometric mean, the financial viability is given more weight
because its numeric range is larger. A small percentage change in the financial rating (e.g. going from
80 to 90) makes a much larger difference in the arithmetic mean than a large percentage change in
environmental sustainability (e.g. going from 2 to 5).

The use of a geometric mean ≪normalizes≫ the ranges being averaged, so that no range dominates
the weighting, and a given percentage change in any of the properties has the same effect on the
geometric mean. So, a 20% change in environmental sustainability from 4 to 4.8 has the same effect
on the geometric mean as a 20% change in financial viability from 60 to 72.

Examples for measures of location

Summarizing, table 5.5 shows various measures of location for the data set for Austrian real GDP
growth given in table 5.1. The geometric mean does not work for the given data set as its usage is

Mean µ̂ 1.36
Median Me 2.00

25%-quantile 1.00
75%-quantile 3.00

Table 5.5: Measures of location for Austrian real GDP growth rates

limited to data sets containing only positive numbers and no zeros. The data set given in table 5.1
contains a negative observation as well as zero.

5.6 Measures of dispersion

Measures of location indicate the general magnitude of the data and locate only the center of a
distribution. They do not establish the degree of variability or the spread of the individual items and
the deviation from the average.

Two distributions of statistical data may be symmetrical and have common arithmetic mean, median
and modes. Yet with these points in common they may differ widely in the scatter or in their values
in measures of dispersion.
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Statistical dispersion (also called statistical variability or variation) is variability or spread in a variable
or a probability distribution. Common examples of measures for statistical dispersion are the variance,
standard deviation and interquartile range.

5.6.1 Range

In descriptive statistics, the range of a set of data is the difference between the largest and smallest
values. It is the smallest interval which contains all the data and provides an indication of statistical
dispersion. Formally, the range is defined by

R = xmax − xmin

where xmin denotes the smallest value in the data set and xmax denotes the largest value in the data
set.

The absolute range of a set of data has some disadvantages for interpretation. Firstly it is strongly
influenced by outliers and secondly its calculation is based on two values only. Thus, the range is not
always a satisfactory measure of dispersion.

The interquartile range counterbalances some of these disadvantages. It is defined as

RQ = x̃75% − x̃25%

where x̃75% is the 75% quantile and x̃25% is the 25% quantile.

Example for the range of a distribution
The 25% quantile of the Austrian real GDP growth data presented in table 5.1 is x̃25% = 1, the 75%
quantile is x̃75% = 3. The lowest value is xmin = −4 and the highest value equals xmax = 4.

Therefore we get
R = 4− (−4) = 8

as range R and
RQ = 3− 1 = 2

as interquartile range RQ.

5.6.2 Average absolute deviation

The average absolute deviation of a data set is the average of the absolute deviation and is a summary
statistic of statistical dispersion or variability. The point from which the deviations are measured is a
measure of central tendency, mostly the median or the mean of the data set.

1. Absolute average deviation from the median is defined as

dMe =
1

n

n∑
i=1

|xi −Me| .
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2. Absolute average deviation from the mean is defined as

dµ̂ =
1

n

n∑
i=1

|xi − µ̂| .

Example of the absolute average deviation from the median and the mean
The absolute average deviation from the median for the Austrian real GDP growth data presented in
table 5.1 is dMe = 1.3636.

The absolute average deviation from the mean of the same data set is dµ̂ = 1.421.

5.6.3 Average squared deviation

The average squared deviation of a data set is the average of the squared deviations and measures
statistical dispersion or variability. The average squared deviation from the arithmetic average is the
most important measure of dispersion and is called variance. There are two definitions of variance,
depending on the data set.

1. If the data set contains the whole population, the population variance σ2 is defined as

σ2 =
1

N

N∑
i=1

(xi − µ)2

where N is the size of the population and µ is the arithmetic mean of the population.

2. If the data set contains just a sample, the sample variance σ̂2 is defined as

σ̂2 =
1

n− 1

n∑
i=1

(xi − µ̂)2

where n is the sample size and µ̂ denotes the sample mean.

For manual calculations the formulae for the population variance and the sample variance can be
reformulated in order to obtain the following short cut formulas:

1. For the population variance we get:

σ2 =

∑N
i=1 x

2
i −

(
∑N

i=1 xi)
2

N

N
=

∑N
i=1 x

2
i −Nµ2

N
.

2. The sample variance can be reformulated into:

σ̂2 =

∑n
i=1 x

2
i −

(
∑n

i=1 xi)
2

n

n− 1
=

∑n
i=1 x

2
i − nµ̂2

n− 1
.
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The standard deviation is then defined as the positive square root of the variance. Hence

σ = +
√
σ2

is the population standard deviation and
σ̂ = +

√
σ̂2

is the sample standard deviation.

If the mean and the standard deviation of a data set or a distribution are known, the coefficient of
variation can be calculated.

1. For a population data set the coefficient of variation is defined as

v =
σ

µ
.

2. For a sample data set the coefficient of variation is defined as

v =
σ̂

µ̂
.

Example for the calculation of the sample variance and sample standard deviation
The sample variance s2 of the Austrian real GDP growth data presented in table 5.1 is

σ̂2 = 4.4545.

Its sample standard deviation σ̂ is
σ̂ = 2.1106.

The coefficient of variation equals

v =
2.1106

1.3636
= 1.548.

5.6.4 Box-and-whisker plot

A box-and-whisker plot (or simply box plot) is a convenient way of graphically depicting a data set
through its five number summaries. It is constructed by drawing a box and two whiskers. The five
values used to construct a box plot are:

1. a measure for the smallest observation or a low quantile for the lower whisker

2. the lower quartile (x̃25%) for the lower end of the box

3. the median for the horizontal line within the box

4. the upper quartile (x̃75%) for the upper end of the box

5. a measure for the largest observation or an upper quantile for the upper whisker
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Figure 5.10: A box plot of the Austrian GDP data presented in table 5.1.

Depending on the data, a box plot may also indicate which observations might be considered outliers.
This is the case if the whiskers are defined alternatively. Possible definitions for the whiskers are

� The minimum and the maximum.

� One standard deviation above and below the mean or the median.

� Some other multiplier of standard deviations, for figure 5.10 all data points outside of Me±2.7 ·σ
are considered outliers.

� The 9th percentile and the 91th percentile.

� The 2nd percentile and the 98th percentile.

Figure 5.10 shows the box plot for the Austrian real GDP growth data presented in table 5.1.

Examples for measures of dispersion

Summarizing, table 5.6 shows various measures of dispersion for the data set for Austrian real GDP
growth given in table 5.1.

Range R 8
Interquartile Range RQ 2

Average absolute deviation from the median dMe 1.3636
Average absolute deviation from the mean dX 1.4215

Population variance σ2 4.0496
Sample variance σ̂2 4.4545

Table 5.6: Measures of dispersion for Austrian real GDP growth rates
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5.7 Correlation and regression

5.7.1 Correlation

Correlation refers to any of a broad class of statistical relationships between two random variables
or two sets of data. Correlations can (but does not necessarily) indicate a predictive relationship
that can be exploited in practice. For example, an electrical utility may produce less power on a
mild day based on the correlation between electricity demand and weather. In this example there is
a causal relationship, because extreme weather causes people to use more electricity for heating or
cooling. However it is necessary to note that statistical dependence is not sufficient to demonstrate
the presence of such a causal relationship.

The following possible forms of correlation should be distinguished:

1. Linear and non-linear correlations
Most methods for measuring correlations implicitly assume that the correlation is of a linear
form. An exception to that is the Spearman correlation coefficient which will be introduced later
in this chapter.

2. Positive and negative correlations
If two variables change in the same direction, then this is called a positive correlation. (e.g. stock
returns of two companies in similar markets)

If two variables change in the opposite direction, then this is called a negative correlation. (e.g.
returns of stocks and bonds)

The value of a correlation coefficient always lies within the interval [−1, 1]. In table 5.7 different degrees
of correlation are distinguished.

degrees positive negative

absence of correlation 0 0
perfect correlation +1 -1
high degree [0.75,1[ ]-1,-0.75]
moderate degree [0.25,0.75[ ]-0.75,-0.25]
low degree ]0,0.25[ ]-0.25,0[

Table 5.7: Depending on the value of the Pearson correlation coefficient different degrees of correlation
can be distinguished.

Data for the following examples
In the following sections we will compare a time series for the real Austrian GDP growth in % and the
change of unemployment in % in Austria in the years from 2007 up to 201713. The data is presented
in table 5.8.

13Source of the data: AMS Österreich and Statistik Austria. Arbeitslosenquote in Österreich von 2007 bis 2017. Statista,
de.statista.com/statistik/daten/studie/17304/umfrage/arbeitslosenquote-in-oesterreich/
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real Austrian change in Austrian
year GDP growth unemployment

(in %) (ILO standard, in %)

2007 3.7 -0.4
2008 1.5 -0.8
2009 -3.8 1.2
2010 1.8 -0.5
2011 2.9 -0.2
2012 0.7 0.3
2013 0.0 0.5
2014 0.7 0.2
2015 1.1 0.1
2016 2.0 0.3
2017 2.6 -0.5

Table 5.8: %-changes in the Austrian GDP and the Austrian unemployment rate according to ILO
standards from 2007 to 2017.

Pearson correlation coefficient

There are several correlation coefficients, often denoted ρ or r, measuring the degree of correlation.
The most common of these is the Pearson correlation coefficient, which is sensitive only to a line-
ar relationship between two variables. Furthermore it should be used only when both variables are
quantitative.

The Pearson correlation coefficient, when applied to a sample, is commonly represented by the letter
r and may be referred to as the sample correlation coefficient.

For the two variables X and Y the Pearson correlation coefficient is defined as

r =

∑n
i=1 (xi − µ̂X) · (yi − µ̂Y )√∑n

i=1 (xi − µ̂X)2 ·
∑n

i=1 (yi − µ̂Y )
2
.

If the sample means (µ̂X and µ̂Y ) and the sample standard deviations (σ̂X and σ̂Y ) are already known,
the Pearson correlation coefficient can alternatively be calculated as

r =
1

n− 1

n∑
i=1

(
xi − µ̂X

σ̂X

)(
yi − µ̂Y

σ̂Y

)
.

Example for the Pearson correlation coefficient
The Pearson correlation coefficient of the data presented in table 5.8 is

r = −0.815.

Therefore the data is highly negatively correlated. This result is plausible, it means that unemployment
tends to go up if GDP growth gets very low (or even negative) and vice versa.
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Spearman correlation coefficient

If the variables are at least ordinal, the Spearman’s rank correlation coefficient can be used. It is usually
denoted by rS and is a non-parametric measure of statistical dependence between two variables. It is
applicable to linear and non-linear relationships between two variables.

It is defined using the ranks of the values of the variables. For assigning ranks, the variables must be
ordinal or quantitative. For a sample of size n we have

Ri, i = 1, . . . n : ranks of the characteristic X

R′
i, i = 1, . . . n : ranks of the characteristic Y.

Then the Spearman correlation coefficient is defined as

rS = 1−
6 ·

∑n
i=1(Ri −R′

i)
2

(n− 1) · n · (n+ 1)
.

Example for the calculation of the Spearman correlation coefficient

real Austrian change in Austrian
year GDP growth unemployment Ri R′

i (Ri −R′
i)

2

(in %) (ILO standard, in %)
2007 3.7 -0.4 11 4 49
2008 1.5 -0.8 6 1 25
2009 -3.8 1.2 1 11 100
2010 1.8 -0.5 7 2 25
2011 2.9 -0.2 10 5 25
2012 0.7 0.3 3 8 25
2013 0.0 0.5 2 10 64
2014 0.7 0.2 3 7 16
2015 1.1 0.1 5 6 1
2016 2.0 0.3 8 8 0
2017 2.6 -0.5 9 2 49∑

379

Table 5.9: Calculation of the Spearman correlation coefficient for the Austrian GDP growth and the
change in Austrian unemployment.

In table 5.9 the given data and their corresponding ranks Ri and R′
i are shown. The lowest rank is

given to the lowest data point in each column, the second lowest the the following data points. If
several data points coincide, all get the same rank but the following ranks have to be skipped in order
to balance the effect.

For example, the years 2012 and 2014 saw a real GDP growth of 0.7. Therefore both pints for 2012
and 2014 get the same rank 3, but the rank 4 is skipped in the consecutive ranking process. The next
value for real GDP growth observed in 2015, which equals 1.1, gets rank 5.

Additionally the table includes values for (Ri − R′
i)
2, which are used to calculate the Spearman

correlation coefficient rS .
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The Spearman correlation coefficient of the data presented in table 5.8 equals

rS = 1−
6 ·

∑11
i=1(Ri −R′

i)
2

(11− 1) · 11 · (11 + 1)
= 1− 6 · 379

1320
= −0.723.

We see again that the data is highly negatively correlated.

Scatter plot

−4 −3 −2 −1 0 1 2 3 4

−0.5

0

0.5

1

Austrian real GDP growth in %

ch
an

g
e
in

u
n
em

p
lo
y
m
en
t
in

%

Figure 5.11: A scatter plot of the real Austrian GDP growth (x-axis) and the change in the Austrian
unemployment rate (y-axis) presented in table 5.8.

For this method, the values of the two variables for every observation are plotted on a graph. One is
taken along the horizontal axis (x-axis) and the other along the vertical axis (y-axis). By plotting the
data we obtain points on the graph which are generally scattered, hence the name ≪scatter plot≫.

The manner in which these points are scattered suggests the degree and the direction of correlation.
Let the degree of correlation be denoted by ρ. Its direction is given by the signs positive and negative.

i) If all points lie exactly on a rising straight line the correlation is perfectly positive and ρ = +1.

ii) If all points lie exactly on a falling straight line the correlation is perfectly negative and ρ = −1.

iii) If the points lie in a narrow rising strip, the correlation is highly positive.

iv) If the points lie in a narrow falling strip, the correlation is highly negative.

v) If the points are spread widely over a broad rising strip the correlation is weakly positive.

vi) If the points are spread widely over a broad falling strip, the correlation is weakly negative.

vii) If the points are scattered without any specific pattern, the correlation is absent, i.e. ρ = 0.

69



5 Descriptive statistics

Example for a scatter plot
Figure 5.11 shows the scatter plot of the data presented in table 5.8. It can easily be seen that the
data is highly negatively correlated.

5.7.2 Linear Regression

Linear Regression is an approach for modeling the relationship between a scalar dependent variable
Y and one or more explanatory variables denoted X. The case of one explanatory variable is called
simple regression. More than one explanatory variable is called multiple regression.

In linear regression, data is modeled using linear predictor functions. Such functions are linear functions
with a set of coefficients and explanatory variables, whose value is used to predict the outcome of a
dependent variable Y . They can be denoted as

ŷ = f(x).

Ordinary least squares

A large number of procedures have been developed for parameter estimation and inference in linear
regression. In this text we focus on the basic and most important model of ordinary least squares
estimation (also referred to as OLS). It is a simple and computationally straightforward method.

The ordinary least squares method minimizes the sum of squared residuals, formally

n∑
i=1

(yi − ŷ)2 −→ min!

If the data X consists of only one explanatory variable, then the linear predictor function is defined
by a constant and a scalar multiplier for xi. This is called the simple regression model.

The vector of parameters in such model is 2-dimensional, and is commonly denoted as (α, β):

ŷi = α+ β · xi.

The coefficients α and β can be obtained by solving the following system of linear equations

n · α + β
∑n

i=1 xi =
∑n

i=1 yi
α
∑n

i=1 xi + β
∑n

i=1 x
2
i =

∑n
i=1 xi · yi

Alternatively the coefficients can be calculated directly by using the formulas

β =

∑
xiyi − 1

n

∑
xi

∑
yi∑

x2i −
1
n (

∑
xi)

2 =
Cov(x, y)

Var(x)
and α = y − βx.
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Coefficient of determination

We can further obtain the coefficient of correlation R of a linear regression model as

R =
n
∑

xiyi −
∑

xi ·
∑

yi√(
n
∑

x2i − (
∑

xi)
2
)
·
(
n
∑

y2i − (
∑

yi)
2
) , −1 ≤ R ≤ 1.

The coefficient of determination is then

R2, 0 ≤ R2 ≤ 1.

Formally, the coefficient of determination is defined as

R2 =
SSR

SST
,

where SSR denotes the sum of square due to regression

SSR =
n∑

i=1

(ŷi − y)2

and SST denotes the total sum of squares

SST =
n∑

i=1

(yi − y)2.

The coefficient of determination R2 can be interpreted as a measure for the goodness of fit of the
model. Values close to one indicate a good model fit.

Applications of linear regression

Linear regression has many practical uses. Most applications of linear regression fall into one of the
following two broad categories:

1. If the goal is prediction, or forecasting, linear regression can be used to fit a predictive model to
an observed data set of Y and X values. After developing such a model, if an additional value
of X is then given without its accompanying value of Y , the fitted model can be used to make
a prediction of the value of Y .

2. Given a variable Y and a number of variables X1, . . . , Xp that may be related to Y , linear
regression analysis can be applied to quantify the strength of the relationship between Y and
the Xj , to assess which Xj may have no relationship with Y at all and to identify which subsets
of the Xj contain redundant information about Y .
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Example of an OLS calculation

The simple regression model can be used to explain the ≪change in Austrian unemployment rate≫ with
the ≪change in the real Austrian GDP≫. Both time series are given in table 5.8. We search for α, β
such that

DeltaUnemploymenti = α+ β ·GrowthGDPi + εi

n∑
i=1

ε2i → min .

To use the formulas from the previous section we denote the change in the Austrian unemployment
rate as yi and the change in the real Austrian GDP as xi. We get the sums

n∑
i=1

xi = 13.2 and

n∑
i=1

yi = 0.2,

n∑
i=1

xi · yi = −8.96 and

n∑
i=1

x2i = 54.98.

This leads to the following linear system to be solved

11.00 · α + 13.20 · β = 0.20
13.20 · α + 54.98 · β = −8.96

Solutions to the linear system are

α = 0.3002 and β = −0.2351.

The linear predictor function is

ŷi = α+ β · xi = 0.3002− 0.2351 · xi.

Based on this predictor function we see that unemployment rises for approximately 0.3 if the real
GDP doesn’t grow. Furthermore one can state that the unemployment rate gets reduced by 0.235 for
every percent of real Austrian GDP growth.

Table 5.10 shows the calculated predictions ŷi in the forth column and the two square sums needed
to calculation the coefficient of determination in the last two columns. For the sum of squares due to
regression we get

SSR = 2.162

and the total sum of squares equals
SST = 3.256.

Therefore the coefficient of determination is

R2 =
SSR

SST
=

2.162

3.256
= 0.6641.

This can be interpreted as:
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year
GrowthGDP DeltaUnemployment

ŷi (ŷ − y)2 (y − y)2
as xi as yi

2007 3.7 -0.4 -0.569 0.345 0.175
2008 1.5 -0.8 -0.052 0.005 0.669
2009 -3.8 1.2 1.193 1.381 1.397
2010 1.8 -0.5 -0.123 0.020 0.269
2011 2.9 -0.2 -0.381 0.160 0.048
2012 0.7 0.3 0.136 0.014 0.079
2013 0.0 0.5 0.300 0.080 0.232
2014 0.7 0.2 0.136 0.014 0.033
2015 1.1 0.1 0.042 0.001 0.007
2016 2.0 0.3 -0.170 0.035 0.079
2017 2.6 -0.5 -0.311 0.108 0.269∑

2.162 3.256

Table 5.10: Calculation of SSR and SST for the growth in real Austrian GDP and the change in the
Austrian unemployment rate.
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Figure 5.12: Simple linear regression explaining the change in the Austrian unemployment rate by the
change of the real Austrian GDP.

About 66% of the variance of the change in the Austrian unemployment rate can be explained
by the variance of the real Austrian GDP growth.

Figure 5.12 shows a scatter plot of the change the Austrian unemployment rate according to ILO
standards and the real Austrian GDP growth. The resulting linear regression line is shown in red.
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As opposed to other mathematical variables, a random variable conceptually does not have a single
fixed value. Rather it can take on a set of possible different values, each with an associated probabi-
lity. In probability theory, random variables are defined in terms of functions on a probability space
(Ω,F ,P).

A probability space consists of three parts.

1. Ω is the sample space, which is the set of all possible outcomes.

2. F is the sigma algebra on the set of possible outcomes. It is the set of all measurable subsets of
Ω, thus all possible events. An event is a set containing zero or more possible outcomes.

� If the sample space Ω is a finite set, the set F is a subset of the power set of Ω, F ⊆ P(Ω).

� For an uncountable infinite sample space (for example R) the sigma algebra F is just
somewhat similar to the power set P(Ω).

3. P assigns the probability to the events. Therefore P is a function from F to probability levels,

P : F → [0, 1]

E 7→ P(E)

Example
Let Ω be the sample space of all humans. The random variableX assigns each human to the measurable
attribute height. We have

X : Ω → R
ω 7→ ≪height of the person≫

We see that a random variable is a function wit the set of all possible outcomes as domain (compare
section 2.1). Random variables are typically classified as either discrete random variables or continuous
random variables.

Discrete variables can take on either a finite or at most a countably infinite set of discrete values.
Their probability distribution is given by a probability mass function which maps a value of the
random variable to a probability.

Continuous variables take on values that vary continuously within one or more (possibly infinite)
intervals. There are an uncountably infinite number of individual outcomes, and each has a
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probability 0. The probability distribution for a continuous random variable is defined using a
probability density function. It indicates the ≪density≫ of the probability of the value of a random
variable being in a small neighborhood around a given value. More technically, the probability
that the value of the random value is in a particular range is derived from the definite integral
of the probability density function for that range.

Both concepts can be united using a cumulative distribution function (CDF) F (x), which describes
the probability that the value of an outcome will be less than or equal to a specified value.

Examples for possible discrete and continuous random variables
Discrete random variables could be

� The number of cars passing a checkpoint in an hour.

� The number of home mortgages approved by a bank per year.

� The received points in an exam.

Continuous random variables could be

� The time it takes to make breakfast.

� The exact length of a car.

� The rate of return of a certain stock within one year.

6.1 Cumulative distribution function

In statistics the cumulative distribution function (CDF) FX(x) describes the probability that the
measured outcome of a random variable X with a given probability distribution will be found at a
value less or equal to x (similar to the empirical cumulative distribution function introduced in section
5.4).

Formally, for every number x, the cumulative distribution function of a random variable X is given
by

FX(x) = P({ω ∈ Ω : X(ω) ≤ x}),

where the right-hand side represents the probability that the random variable X takes on a value less
or equal to x. The probability that X lies in the interval ]a, b], where a < b, is

P({ω ∈ Ω : a < X(ω) ≤ b}) = FX(b)− FX(a).

If treating several random variables X,Y, . . . etc. the corresponding letters are used as subscripts while,
if treating only one, the subscript is omitted. For this script we use bold F for cumulative distribution
functions, in contrast to lower-case f used for probability density functions and probability mass
functions.
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6.2 Probability mass functions for discrete random variables

If X is a discrete random variable, then the function

fX(x) = P({ω ∈ Ω : X(ω) = x})

defined on the measured outcomes of X is called the probability mass function (PMF) of the discrete
random variable X.

Suppose that
X : Ω → A A ⊆ N

is a discrete random variable defined on a sample space Ω and a natural number as measured outcome.
Then the probability mass function

fX : N → [0, 1]

for X is defined as
fX(x) = P(X = x) = P({ω ∈ Ω : X(ω) = x}).

Note that fX is defined for all numbers, including those not in the image of X. It holds that fX(x) = 0
for all x ̸∈ X(Ω). The sum of probabilities across all x must equal 1,∑

x∈Ω
fX(x) = 1.

For a a discrete random variable X which attains values x1, x2, . . . , xn with probabilities P({ω ∈ Ω :
X(ω) = xi}) = pi for all i = 1, . . . , n, the cumulative distribution function of X will be discontinuous
at points xi and constant in between:

FX(x) = P({ω ∈ Ω : X(ω) ≤ x})

=
∑
xi≤x

P({ω ∈ Ω : X(ω) = xi})

=
∑
xi≤x

pi.

Example for a discrete random variable
Suppose that Ω is the sample space of all outcomes of a single toss of a fair coin and X is the random
variable defined on Ω assigning 0 to ≪tails≫ and 1 to ≪heads≫. Since the coin is fair, the probability
mass function is

fX(x) =

{
1
2 x ∈ {0, 1}
0 x ̸∈ {0, 1}.

Therefore the variable X has the outcomes x1 = 0 and x2 = 1 and we can write the probability mass
function in tabular form as

x1 = 0 x2 = 1 x ̸∈ {0, 1}
P({ω ∈ Ω : X(ω) = x}) = fX(x) 1/2 1/2 0
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The cumulative distribution function of the random variable X is

FX(x) =


0 if −∞ < x < 0
1/2 if 0 ≤ x < 1
1 if x ≥ 1.

This is a special case of the binomial distribution (compare section 6.6.2).

6.3 Probability density functions for continuous random variables

A continuous random variable is one which can take a continuous range of values, as opposed to a
discrete distribution (see previous section), where the set of possible values is at most countable. Note
that for continuous variables the probability that the random variable attains any distinct value always
equals zero! Merely the probability that the outcome will fall into an interval is nonzero.

For a continuous random variable X the probability density function fX(x) describes the behavior of
the random variable. The cumulative distribution function of such a continuous random variable X,
denoted FX(x), can be calculated using its probability density function fX as follows:

FX(x) =

∫ x

−∞
fX(u) du.

Equivalently, if the continuous random variable X has a differentiable cumulative distribution function
FX(x), then

FX(x) =

∫ x

−∞
f(u) du,

and the function

fX(x) =
dFX

dx
(x)

is the probability density function of X.

The probability of X falling into a given interval, say [a, b] is given by the integral

P({ω ∈ Ω : a ≤ X(ω) ≤ b}) =
∫ b

a
fX(x) dx.

Here we see that the probability for X taking any single value a, that is the stochastic event

{ω ∈ Ω : a ≤ X(ω) ≤ a},

is zero, because an integral with coinciding upper and lower limits always equals zero.

6.4 Expected value of a random variable

The expected value of a random variable is the weighted average of all possible values that this random
variable can take on. The weights used in computing this average correspond to the probabilities in
case of discrete random variables, or densities in case of continuous variables.
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6.4.1 Expected value for a discrete random variable

Suppose the random variable X takes value x1 with probability p1, value x2 with probability p2, and
so on, up to value xn with probability pn. The expected value of this random variable X is defined
as

E(X) = x1 · p1 + x2 · p2 + . . .+ xn · pn =

n∑
i=1

xi · pi.

Since all probabilities pi add up to 1 (
∑n

i=1 pi = 1) the expected value can be viewed as the weighted
average, with pi’s being the weights.

If all outcomes xi are equally likely (that is p1 = p2 = . . . = pn
14), then the weighted average becomes

a simple arithmetic average. For a fair dice we have

E(X) = 1 · 1
6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
= 3.5

The expected value of a discrete random variable with countable infinite possible outcomes xi for all
i ∈ N only exists if

∞∑
i=1

|xi| · pi < ∞.

The generalized expected value of the form E(g(X)) for any function g(X) can be calculated as

E(g(X)) =

∞∑
i=1

g(xi) · pi.

6.4.2 Expected value for a continuous random variable

If the probability distribution of X has the probability density function fX(x), the expected value can
be computed as

E(X) =

∫ ∞

−∞
x · fX(x) dx.

Similarly to the discrete case, the expected value of an continuous random variable only exists if∫ ∞

−∞
|x| · f(x) dx < ∞.

If this holds, we can calculate the expected value of an arbitrary function of X, say g(X). With respect
to the probability density function fX(x) the expected value of g(X) is given by the inner product of
fX and g

E(g(X)) =

∫ ∞

−∞
g(x) · fX(x) dx.

Example for the calculation of the expected value of a continuous random variable with given probability
density function

14E.g. probability a certain value when of tossing a fair dice always equals 1/6.
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Suppose, we have a continuous random variable X with a probability density function

fX : R → R

x 7→
{

0, x ̸∈ [0, 3]
−2

9x+ 2
3 , x ∈ [0, 3].

Then the expected value E(X) can be calculated as

E(X) =

∫ ∞

−∞
x · fX(x) dx =

∫ 3

0
x

(
−2

9
x+

2

3

)
dx

=

∫ 3

0

(
−2

9
x2 +

2

3
x

)
dx

= −2

9
· x

3

3
+

2

3
· x

2

2

∣∣∣∣3
0

= −2

9
· 27
3

+
9

3
= 1.

6.4.3 Properties of the expected value

There are three major properties of the expected value.

Constants The expected value of a constant is equal to the constant itself. For example, if c is a
constant, then E(c) = c.

Monotonicity If X and Y are random variables such that X ≤ Y almost surely, then

E(X) ≤ E(Y ).

Linearity The expected value E is linear in the sense that

E(X + c) = E(X) + c

E(X + Y ) = E(X) +E(Y )

E(a ·X) = a ·E(X)

where X,Y are random variables defined on the same probability space and a, c ∈ R.

6.5 Variance of a random variable

The variance of a probability distribution is a measure of how far a set of values is spread out (compare
section 5.6.3). It is one of several descriptors of a probability distribution, describing how far the values
lie away from the expected value (e.g. the mean).

The variance is a parameter describing in part either the actual probability distribution of an observed
sample of numbers, or the theoretical probability distribution of a population of numbers. An estimate
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for the variance for the theoretical probability distribution can be calculated using a sample of data
from such a distribution. In the simplest case this estimate can be the sample variance, defined in
section 5.6.3.

If a random variable X has the expected value µ = E(X), then the variance of X is given by

Var(X) = E
(
(X − µ)2

)
.

Here it can be seen that the variance is the expected value of the squared difference between the
variable’s realisation and the variable’s expected value.

This definition can be expanded using the properties of variance and we get:

Var(X) = E
(
(X − µ)2

)
= E(X2 − 2µX + µ2)

= E(X2)− 2µE(X) + µ2 = E(X2)− 2µ2 + µ2

= E(X2)− µ2 = E(X2)− (E(X))2 .

A mnemonic for the expression above is ≪mean of the square minus square of the mean≫. The variance
of a random variable X is typically designated as Var(X), σ2

X , or simply σ2. The standard deviation,
denoted by σ, is defined as

σ = +
√
σ2.

6.5.1 Variance of a discrete random variable

If the random variable X is discrete with probability mass function x1 7→ p1, . . . , xn 7→ pn, then

Var(X) =
n∑

i=1

pi · (xi − µ)2

where µ is the expected value, i.e.

µ =

n∑
i=1

pi · xi.

That is the expected value of the square of the deviation of X from its own mean. It can be expressed
as ≪the mean of the squares of the deviations of the data points from the average≫. It is thus the
mean squared deviation.

Example for the calculation of the variance of rolling an unbiased die
The variance of the discrete random variable describing rolling an unbiased die is

Var(X) = (1− 3.5)2 · 1
6
+ (2− 3.5)2 · 1

6
+ . . .+ (6− 3.5)2 · 1

6
≈ 2.92

6.5.2 Variance of a continuous random variable

If the random variable X is continuous with probability density function fX(x), then the variance
equals the second central moment, given by

Var(X) =

∫
(x− µ)2 · fX(x) dx,
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where µ is the expected value,

µ =

∫
x · fX(x) dx,

and where the integrals are definite integrals for x ranging over the full range of X.

Note that not all distributions have a variance. If a continuous distribution does not have an expected
value, as is the case for the Cauchy distribution, it does not have a variance either. Many other
distributions for which the expected value does exist also do not have a variance because the integral
in the variance definition diverges.

Example for the calculation of the variance of an arbitrary random variable with given probability
density function
The variance of the random variable X with the probability density function

fX : R → R

x 7→
{

0, x ̸∈ [0, 3]
−2

9x+ 2
3 , x ∈ [0, 3].

is

Var(X) =

∫ 3

0
(x− 1)2

(
−2

9
x+

2

3

)
dx

=

∫ 3

0

(
−2

9
x3 +

10

9
x2 − 14

9
x+

2

3

)
dx

= −2

9
· x

4

4
+

10

9
· x

3

3
− 14

9
· x

2

2
+

2

3
x

∣∣∣∣3
0

=
1

2
.

6.5.3 Properties of the variance

1. Variance is non-negative because the squares are positive or zero,

Var(X) ≥ 0.

2. The variance of a constant random variable is zero; and if the variance of a variable in a data
set is 0, then all entries have the same value,

P({ω ∈ Ω : X(ω) = a}) = 1 ⇐⇒ Var(X) = 0.

3. Variance is invariant respect to changes in a location parameter. That is, if a constant is added
to the values of the variable, the variance is unchanged,

Var(X + a) = Var(X).
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4. If all values are scaled by a constant, the variance is scaled by the square of that constant,

Var(a ·X) = a2 ·Var(X).

5. The variance of a sum of two random variables is given by

Var(a ·X + b · Y ) = a2 ·Var(X) + b2 ·Var(Y ) + 2ab · Cov(X,Y )

Var(X − Y ) = Var(X) + Var(Y )− 2Cov(X,Y )

The variance of a finite sum of uncorrelated random variables is equal to the sum of their varian-
ces. This stems from the identity above and the fact that the covariance is zero for uncorrelated
variables.

6.6 Important probability distributions

6.6.1 Hypergeometric distribution

In statistics, the hypergeometric distribution is a discrete probability distribution that describes the
probability of k successes in n draws from a finite population of size N containing m successes without
replacement. Formally, a random variable X follows the hypergeometric distribution if its probability
mass function is given by

f(k;N,m, n) = P({ω ∈ Ω : X(ω) = k}) =
(
m
k

)(
N−m
n−k

)(
N
n

) ,

where

� N is the population size

� m is the number of success states in the population

� n is the number of draws

� k is the number of successes in the draws

�

(
a
b

)
is the binomial coefficient15

It is positive when
max(0, n+m−N) ≤ k ≤ min(m,n).

15The binomial coefficient is defined as (
a

b

)
=

a!

b!(a− b)!
for 0 ≤ b ≤ a.
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Expected value The expected value of the hypergeometric distribution is

E(X) = n
m

N
.

Variance The variance of the hypergeometric distribution is

Var(X) = n
m

N

(
1− m

N

) N − n

N − 1
.

Example for a hypergeometric distribution
The classical application of the hypergeometric distribution is sampling without replacement. Think
of an urn with two types of marbles, black ones and white ones. Define drawing a white marble as a
success and drawing a black marble as a failure. If the variable N describes the number of all marbles
in the urn and m describes the number of white marbles, then N −m corresponds to the number of
black marbles. In this example X is the random variable whose outcome is k, the number of white
marbles actually drawn in the experiment.

Suppose, there are 5 white and 45 black marbles in the urn. Standing next to the urn, you close your
eyes and draw 10 marbles without replacement. What is the probability that exactly 4 of the 10 are
white?

We get

P({ω ∈ Ω : X(ω) = 4}) =
(
5
4

)(
50−5
10−4

)(
50
10

) =
5 · 8145060
10272278170

= 0.00396 = 0.396%.

6.6.2 Binomial distribution

The binomial distribution is the discrete probability distribution of the number of successes in a
sequence of n independent yes/no experiments, each of which yields success with probability p. The
binomial distribution is frequently used to model the number of successes in a sample of size n drawn
with replacement from a population size N .

In general, if a random variable X follows the binomial distribution with the parameters n and p, we
write X ∼ B(n, p). The probability of getting exactly k successes in n is given by the probability mass
function

f(k;n, p) = P({ω ∈ Ω : X(ω) = k}) =
(
n

k

)
pk(1− p)n−k, for k = 0, 1, 2, . . . , n.

Figure 6.1 shows the probability mass function for different values for p, n = 100 and k = 0, . . . , n.

Expected value The expected value of a binomial distributed random variable X ∼ B(n, p) is

E(X) = n · p.

Variance The variance is
Var(X) = n · p · (1− p).
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Figure 6.1: Probability mass functions of the binomial distribution with different values for p, n = 100
and k = 0, . . . , n.

Example for a binomial distribution
A box contains 25 items, 10 of which are defective. A sample of two items with replacement will be
taken. Then the probability, that one of the items are defective is

P({ω ∈ Ω : X(ω) = 1}) =
(
2

1

)
·
(
10

25

)1

·
(
15

25

)2−1

=
12

25
= 0.48 = 48%.

6.6.3 Poisson distribution

The Poisson distribution is a discrete probability distribution that expresses the probability of a given
number of events occurring in a fixed interval of time and/or space if these events occur with a known
average rate and independently of the time since the last event. The distribution was first introduced
by Siméon Denis Poisson (1781-1840). His work focused on certain random variables N that count the
number of discrete occurrences that take place during a time-interval of given length.

A discrete stochastic variable X is said to have a Poisson distribution with parameter λ > 0 if the
probability mass function of X for k = 0, 1, 2, . . . is given by

f(k, λ) = P({ω ∈ Ω : X(ω) = k}) = λk · e−λ

k!
.

Figure 6.2 shows the probability mass function for different values for λ and k = 0, . . . , 20.

For a Poisson distributed random variable X ∼ Pois(λ), the positive real number λ ∈ R is equal to
the expected value of X and also to the variance

λ = E(X) = Var(X).

The Poisson distribution can be applied to systems with a large (theoretically infinite) number of
possible events, each of which is rare.
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Figure 6.2: Probability mass functions of the Poisson distribution with different values for λ.

Example for a Poisson distribution
Assume that the number of defaults per year on a large set of loans will be measured as no defaults,
one default, two defaults and so on. In average the number of defaults per year is 0.3. Then, the
probability that there are two defaults in one year is

P({ω ∈ Ω : X(ω) = 2}) = 0.32e−0.3

2!
=

0.066673

2
= 0.03333.

Therefore the probability of two defaults in one year is 3.33%.

6.6.4 Normal distribution

In 1809 Carl Friedrich Gauss published his monograph ≪Theoria motus corporum coelestium in sectio-
nibus conicis solem ambientium≫ where among other things he introduced several important statistical
concepts, such as the method of least squares, the method of maximum likelihood and the normal
distribution.

In probability theory, the normal distribution (or Gaussian distribution) is a continuous probability
distribution that has a bell-shaped probability density function, known as the Gaussian function. A
continuous variable X is normally distributed if its probability density function is of the form

f(x;µ, σ2) =
1

σ
√
2π

· e−
1
2(

x−µ
σ )

2

.

Figure 6.3 shows the probability density function of the normal distribution for different values for µ
and σ2. Sometimes it is denoted φµ,σ2(x).

For a normal distributed continuous random variable X ∼ N(µ, σ2), the parameter µ is the mean or
expected value,

E(X) = µ.
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Figure 6.3: Probability density function φµ,σ2(x) of normally distributed random variables with diffe-
rent values for µ and σ2.

The second parameter σ2 is its variance,

Var(X) = σ2.

σ is known as the standard deviation. The distribution with µ = 0 and σ2 = 1 is called the standard
normal distribution.
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Figure 6.4: Cumulative distribution functions Φµ,σ2(x) of normally distributed random variables with
different values for µ and σ2.

The normal distribution is considered the most prominent probability distribution in statistics. There
are several reasons for this:

1. The normal distribution arises from the central limit theorem, which states that under mild
conditions the mean of a large number of random variables drawn from the same distribution is
distributed approximately normally, irrespective of the form of the original distribution.
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2. The normal distribution is very tractable analytically. This means, that a large number of results
involving this distribution can be derived in explicit form.

There are several rules of the thumb describing properties of the normal distribution.

� About 68% of the values lie within 1 standard deviation of the mean.

� Similarly, about 95% of the values lie within 2 standard deviations of the mean.

� Nearly all (99.7%) of the values lie within 3 standard deviations. In figure 6.5 these levels are
shown graphically.

Figure 6.5: Empirical rules of a normally distributed random variable shown with its density function.

6.6.5 Standardized normal distribution

As stated above, the normal distribution with µ = 0 and σ2 = 1 is called the standard normal distri-
bution. Every normally distributed random variable X with known parameters for µ and σ2 can be
transformed into a random variable Z with standard normal distribution by the linear transformati-
on

Z =
X − µ

σ
,

where µ is the mean of the population and σ is the standard deviation of the population. Here, Z
represents the distance between the raw score and the population mean in units of the standard
deviation. Z is negative where the raw score is below the mean, positive when above.

Standardization can be used to calculate prediction intervals for a normally distributed random va-
riable X with known mean and variance. A prediction interval is an estimate of an interval in which
future observations will fall with a certain probability, given what has already been observed. A pre-
diction interval [l, u] for a future observation of the random variable X ∼ N(µ, σ2) with known mean
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and variance can be calculated from

γ = P({ω ∈ Ω : l < X(ω) < u})

= P

({
ω ∈ Ω :

l − µ

σ
<

X(ω)− µ

σ
<

u− µ

σ

})
= P

({
ω ∈ Ω :

l − µ

σ
< Z(ω) <

u− µ

σ

})
,

where

Z =
X − µ

σ
,

is the standard score of X and is distributed according to the standard normal distribution, Z ∼
N(0, 1).

significance γ z value

50% 0.67
90% 1.64
95% 1.96
99% 2.58

Table 6.1: z-values for different levels of significance for symmetric intervals.

A prediction interval is conventionally written as

[µ− zσ, µ+ zσ].

The most important values for z are shown in table 6.1 for symmetric intervals. For a single tail γ̃ has
to be transformed as in

γ̃ = 1− 1− γ

2
.

Example for the calculation of a prediction interval for a normally distributed random variable
Assume, we want to calculate the 95% prediction interval for a normal distribution with a mean of
µ = 5 and a standard deviation of σ = 2.

Then z equals 1.96. Therefore, the lower limit of the prediction interval is

l = 5− (2 · 1.96) = 1.0801

and the upper limit equals
u = 5 + (2 · 1.96) = 8.9199.

Thus we get the prediction interval of approximately 1 to 9, where 95% of all observations will lie
in.
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Exxon’s Toxic Culture Drives Workers From a Once Coveted Career 

2022-10-13 10:00:21.94 GMT 

 

By Kevin Crowley 

(Bloomberg Businessweek) -- Shortly after Exxon Mobil Corp. lost its 

battle with an activist investor last year, an executive named Bill 

Keillor decided to give his department a morale boost. It had been a 

difficult year and a half for Exxon employees. Covid-19 and plunging 

crude prices had led to halted salary increases, reduced benefits, 

and, for the first time in decades, thousands of layoffs. Anxiety 

was coursing through the organization. 

So Keillor, whose title is global IT vice president, and his 

leadership team organized an awards ceremony to take place at 

Exxon’s Houston campus. They posted an invite on Yammer, an internal 

social network, with Keillor’s face cropped onto a tuxedo. With many 

employees still working remotely, most tuned in via Zoom. 

Keillor started by thanking everyone for their hard work over the 

past year, presented awards to three top-performing teams, and then 

opened the floor to questions. It was at this point things started 

to unravel, according to four people present who spoke on condition 

of anonymity. The software developers, data analysts, and 

technicians who run Exxon’s vast computing network, which helps the 

company manage everything from drilling wells to pipeline flows, 

were in no mood to celebrate. Emboldened by the virtual format, they 

began firing off tough questions. They wanted to know if there would 

be more layoffs, whether remote working would continue after the 

pandemic, and whether Exxon was willing to raise pay to the level of 

major tech companies. 

To an outside observer, the scene might have appeared like a 

slightly tense version of your average corporate town hall. But 

within Exxon, famous for its top-down, buttoned-up, authoritarian 

culture, where employees rarely challenge their superiors, and 

certainly not in an open forum, the moment had the strong whiff of 

rebellion. As Keillor bristled, other managers stepped in to take 

some questions, deflecting attention from the boss. But eventually, 

Keillor had had enough and snapped. 

If you want to be a “hotshot” and triple your pay working for 

Amazon, then go right ahead, the people recall him saying. “Good 

luck to you.”  

Rather than be humbled by the scolding, staffers began circulating 

memes mocking the event in private chat groups, which rapidly spread 

across the company. One depicted a long-term career at Exxon as a 

car hurtling off a highway. Another compared the awards ceremony to 

a piece of tape used to patch a leaking barrel of water. Others 

suggested it was about time employees take Keillor up on his advice 

and quit. 

A year and a half later, even as its stock surges again and Exxon 

makes more money than it has in its 140-year history, the company 



has experienced the highest attrition since its merger with Mobil in 

1999. Of the 12,000 departures globally in the past two years, less 

than half were from layoffs. “Like nearly every company, attrition 

increased in the last two years, but we don’t see that as a long-

term trend,” Exxon said in a statement. “Importantly, we are seeing 

good results when hiring top talent for roles throughout the 

company, at entry-level and for senior executive positions.” 

But a Bloomberg Businessweek investigation involving interviews with 

more than 40 current and former employees (many of whom requested 

anonymity because Exxon hasn’t authorized them to speak publicly), 

as well as reviews of dozens of internal documents, reveals one 

overriding reason talent is fleeing: a culture that’s increasingly 

out of step with the world around it. Those interviewed describe an 

organization trapped in amber, whose insular and fear-based culture—

once a beacon of corporate America—has become a drag on innovation, 

risk taking, and career satisfaction. Although many expressed pride 

at working for an industry leader, they were also frustrated by how 

slow it was to invest in some of the energy industry’s biggest 

breakthroughs over the past decade, including shale oil and low-

carbon technologies, making it a place where the best and brightest 

no longer want to spend their best years. “I was bored at my job,” 

says Avery Smith, who earned more than $100,000 a year as a data 

scientist right after graduating from college and quit last year, 

echoing what many other former employees told Businessweek. “I was 

pretty fed up with not innovating.” 

Exxon’s performance ranking system, which pits employees against 

each other, dominates the day to day. Subordinates are told not to 

speak out against their bosses in meetings for fear of being placed 

at the bottom of the rank and pushed out. Employees are reluctant to 

raise problems or speak freely about environmental issues. Senior 

managers too often promote people who look and sound like themselves 

at the expense of technical experts willing to deliver hard 

messages, and some employees of color say they’ve been marginalized. 

“Agreeability to senior leadership has become more important than 

capability,” says one executive who left the company last year after 

two decades. “Unfortunately this accelerated during the pandemic.” 

Exxon spokesperson Amy von Walter rejects those characterizations. 

“The idea that ExxonMobil’s culture is what these employees say it 

is doesn’t hold water for two reasons: how many people join this 

company each year and how long people stay,” she wrote in an email. 

“No culture is perfect and it’s far too easy to take a few data 

points and paint with a broad brush, but that doesn’t produce an 

accurate portrait.” (In response to the Keillor episode, von Walter 

says Exxon encourages candid workplace conversations, “although we 

may not get it right every time.”) 

But CultureX, an organization out of MIT that evaluates corporate 

culture based on Glassdoor reviews, says these problems run so deep 

that Exxon now ranks below industry benchmarks for 143 of the 196 

cultural issues it measures. According to CultureX co-founder 

Charlie Sull, innovation, collaboration, and psychological safety 



fell far below those of oil industry competitors, whereas pay and 

benefits ranked above average. Exxon, he says, appears to be using 

remuneration and perks “to compensate for a culture that faces 

significant challenges with toxicity.” 

Exxon, which traces its roots to John D. Rockefeller’s Standard Oil, 

is used to being public enemy No. 1. It’s incurred the wrath of 
politicians and civil society for being too powerful, too 

profitable, and too polluting. But rarely has it suffered such 

discontent within its own ranks. “Upper management doesn’t like to 

hear bad news, so to stay at Exxon long term, you have to drink the 

Kool-Aid,” says Dar-Lon Chang, a mechanical engineer who left the 

company in 2019 after more than a decade. “This doesn’t sit well 

with younger people and especially those concerned about the climate 

crisis.” 

Since losing the campaign to Engine No. 1, a tiny activist investor 
firm, Exxon has reformed its climate strategy. Under Chief Executive 

Officer Darren Woods, it’s pledged more ambitious emissions 

reduction targets, increased spending on clean energy, and elevated 

its low-carbon division to the top of the corporation. It’s even 

made a series of rare external hires including Chief Financial 

Officer Kathy Mikells from Diageo Plc and low-carbon head Dan 

Ammann, who previously ran General Motors Co.’s autonomous vehicle 

startup. It’s condensed 11 businesses into three and is on track to 

cut costs by $9 billion by 2023. 

By financial standards, Woods’s plan is working. The stock is up 60% 

this year, ahead of its major peers, and closing in on a record 

high. But if Exxon has any shot at dominating the volatile energy 

transition over the next century, it will need to attract and hold 

on to the next generation of scientists, engineers, and 

technologists. “We can talk all day about low carbon,” says one 

recently departed Exxon executive. “But first we’ve got to 

decarbonize the culture.” 

Soon after Rex Tillerson became CEO of Exxon in 2006, he decided to 

build an office complex in Texas to match its newfound status as the 

biggest company in the US. Tillerson and his executives would remain 

in Exxon’s “God Pod,” a nickname for the headquarters in suburban 

Dallas. But about four hours away, the new Houston campus would 

become the company’s largest hub, accommodating more than 10,000 

people. 

Tillerson spared no expense, and little did he need to. As the world 

melted down from the financial crisis, Exxon made $45 billion in a 

single year, then the biggest profit of any company in US history. 

The campus would have two lakes; its low-rise, glass-walled 

buildings would house a food court and child-care facilities. The 

piece de resistance was a 10,000-ton cube that appears to hover over 

a plaza below, built to show off Exxon’s engineering prowess. 

According to interviews, construction planners decided to move an 

almost 100-foot oak tree, estimated to be more than a century old, 

from a nearby forest to a courtyard within the campus. Much loved by 



Tillerson, the tree was meant as a symbol of the company’s reverence 

for the surrounding landscape and the environment. Exxon worked with 

world-renowned arborists, digging up the tree and its root system, 

loading it onto a heavy-duty trailer, and eventually moving it to 

its new home in a process that took almost a month. Once the tree 

was in place, contractors even installed a custom-built irrigation 

system. 

It was a monumental task, but it wasn’t beyond the power of Exxon, a 

corporation that holds unique importance in the history of corporate 

America. Few companies exist for more than a century, let alone 

dominate their industry over that timespan. In 2011, exactly 100 

years after the US government broke up Standard Oil, Exxon was once 

again the biggest company in the S&P 500. Not only did it embody 

American capitalism through the 20th century, but it also literally 

fueled it, ensuring steady supplies of oil, gasoline, and chemicals 

through two world wars, the midcentury consumer boom, and the rise 

of OPEC. 

Exxon’s modern culture began with Lee Raymond, a chemical engineer 

who became CEO in the early 1990s. He earned the nickname “Iron Ass” 

for his acerbic tongue, uncompromising demands, and public 

reprimands of senior managers, according to Private Empire: 

ExxonMobil and American Power by Steve Coll. The typical Exxon man—

and Exxon’s workforce is two-thirds male—“is not an eccentric, a 

maverick, or an entrepreneurial type,” read a Texas Monthly article 

from 1978. “He’s not a flashy or sloppy dresser. He’s bright, 

aggressive, good with numbers, less good with people.” The same is 

still largely true today among Exxon’s higher ranks. An average 

career length is about three decades, and no outsider had been hired 

into the modern Exxon’s inner sanctum of top executives until last 

year. 

Engineering is Exxon’s lifeblood. Its top recruiting grounds are 

mainly state schools with prestigious engineering programs—Texas 

A&M, Georgia Tech—rather than the Ivy League. Salaries could start 

at $100,000, and benefits include a traditional pension, a relic in 

corporate America. A graduate joining Exxon could easily travel and 

relocate almost anywhere in the world. Engineers in their 20s could 

find themselves working on refinery upgrades along the Gulf Coast or 

deep-water drilling in Brazil or liquefied natural gas in Qatar. By 

their mid-30s they could be involved in developing major projects, 

and by their 40s they could be earmarked as a future executive, 

formally assisting a vice president in the God Pod. By age 55, even 

if they’d risen only to middle management, that pension would kick 

in, enabling a comfortable early retirement. 

Exxon’s inward-looking culture had its upsides. It made the company 

self-reliant, independent of government in a way few of its 

competitors can match, and its indifference to the whims of Wall 

Street allowed executives to plan for the long term. It bred strong 

bonds between peers, and several of the employees Businessweek 

interviewed said couples both working at the company were common. 

“The best part of the company was the people,” says Bernie Pafford, 



a chemicals specialist who retired in 2018 after 42 years. “Not 

necessarily the management, but the people.” 

But ascending through Exxon with technical acumen and smarts has 

never been enough. Successful recruits must follow rules and work 

within a hierarchy. Acronyms guide much of daily life. The OIMS, or 

Operations Integrity Management System, governs existing operations 

including production sites and refineries; new projects are 

developed through EMCAPS, or ExxonMobil Capital Projects Management 

System. Safety procedures are sacrosanct. A rule requiring employees 

to hold the handrail while walking on stairs, primarily to avoid 

falls at dangerous sites such as offshore platforms or chemical 

plants, is rigorously enforced even in offices. License-plate-

reading traffic cameras on Houston office grounds can enforce a 

strict 25-mph speed limit. Employees are prohibited from talking on 

the phone while driving, even if doing so legally, hands-free. 

Within any major oil company, career advancement often lies in 

getting a project approved, which takes years. Persuading executives 

to commit billions of dollars to a project can catapult employees to 

the executive track, but it also has the potential to skew 

incentives. A 2020 internal Exxon study on “runaway projects” that 

exceeded early cost estimates by more than 70% suggested that they 

were “intentionally underestimated” during planning so they could 

get greenlighted. When projects inevitably suffered delays, 

individual teams would desperately try to get their parts of it back 

on track at the expense of the overall goal. “These actions created 

a negative feedback loop where the recovery action made matters 

worse,” the study said, without specifying whether it was Exxon 

employees or the other companies that invested in the project that 

were at fault. (Exxon says most of the overspending was because of 

projects in which it was a junior partner with no operational 

control.) 

These tendencies exacerbated Exxon’s growing costs and bureaucracy, 

which started to erode returns in the late 2010s. Big strategic 

moves from early in Tillerson’s tenure as CEO failed to pay off. In 

2010, Exxon spent $31 billion on XTO Energy Inc., a shale gas 

producer, right before natural gas prices plunged. The company was 

searching for crude overseas while smaller rivals discovered how to 

economically produce shale oil in the US. A deal struck with 

President Vladimir Putin to explore the Russian Arctic was locked 

behind sanctions. 

Pressure was also growing on climate. In 2015, Inside Climate News 

published a series of documents that appeared to show Exxon 

scientists knew about the global warming dangers of burning fossil 

fuels in the 1970s, and the company embarked on a public-relations 

campaign to downplay the issue. Tillerson denied any suggestion that 

Exxon misled the public. 

When current CEO Woods, another Exxon lifer, replaced Tillerson in 

2017, it was clear the company was falling behind. To help return it 

to its former glory, Woods formulated an aggressive $200 billion 

expansion plan at a time when many rivals were pulling back on 



spending and pivoting to low carbon. But by the end of 2018, Exxon’s 

stock performance was lagging. Shares had returned a miserable 1.4% 

annually over the previous decade, including dividends, and Exxon’s 

debt almost tripled, to $20 billion, in the same time frame. 

Around this time it became clear that “Rex’s Tree” was also 

struggling. Its canopy grew thinner, and it lost branches year after 

year. Lightning struck it at least once. Far from being the imposing 

salute to nature Exxon had intended, employees joked that it looked 

like the Giving Tree in the allegorical tale by Shel Silverstein, in 

which an apple tree sheds parts of itself to its owner.  

Eventually, around Memorial Day in 2021, the grand old oak was 

completely removed while most employees were out of the office. A 

memo went around the following morning explaining that despite its 

outward appearance, it was dying inside. 
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By Richard Cookson 

(Bloomberg Opinion) -- Expectations of how much central banks will 

push interest rates higher to get inflation under control have 

increased to such an extent that some are starting to talk about 

overkill. Markets now think that benchmark rates in the US will top 

out at about 4.7% (from 3.25% now), 3% in the euro zone (from 

1.25%), and 5.8% in the UK (from 2.25%). Partly as a result -- 

though also because energy prices have fallen -- expectations for 

inflation over the next five years has tumbled.  

That combination is why expected real rates — yields on conventional 

bonds minus the expected inflation — have spiked higher. Perhaps 

unsurprisingly, the UK has led the pack, and over the past year 

expected five-year real yields have risen an extraordinary five 

percentage points. But the surge in expected US real yields has not 

been far behind. This vertiginous rise has clobbered financial 

assets and led to all the muttering about overkill. The 

extraordinary thing about rates, though, is not how high they are 

but how low. They will have to increase much more to get inflation 

sustainably lower. 

A big reason for the expected drop in inflation is that investors 

big and small were used to a world in which disinflation seemed more 

of a problem and think it won’t take much to bring it back. The same 

is true of central banks and, strange as it may seem, they still 

have a lot of credibility. 

Broadly speaking, these views are supported by three main arguments. 

The first is that you can’t get much inflation given the 

unprecedented amounts of debt outstanding in the world today. What 

people generally mean by this is the expense of servicing all that 

debt at higher interest rates would rapidly eat into demand and thus 

growth. However you cast the argument, it is wrong. Simply put, if 

nominal growth is much higher than nominal rates, debtors are in 

heaven and creditors in hell. There are exceptions, such as highly 

leveraged companies, governments that link lots of pensions to 

inflation, or households in the UK borrowing at floating rates. But 

unexpectedly strong inflation mainly clobbers creditors. Look for 

evidence at the appalling real returns on bonds over the past couple 

of years.  

The second argument is that the amount of money sloshing around in 

developed economies is rapidly slowing, thereby choking the life out 

of both growth and inflation. The problem with this argument is 

twofold. The first is that it confuses stocks and flows. While money 

growth is indeed slowing, the stock of money remains very high. The 

second is that monetarists aren’t good at accounting for the 

velocity of that money, or how fast it circulates around the 

economy. Having fallen like a rock for many years, velocity is 

picking up, supporting inflation pretty much by definition.  



The third argument is that slower economic growth will bring 

inflation rates down. Certainly, most of the developed world has 

been slowing and China has fallen into a very deep hole, cutting 

global demand. The Bloomberg Commodity Index is down more than 15% 

since June and West Texas Intermediate oil prices by about 25%. 

Together with energy price caps in many countries, this is likely to 

reduce headline consumer inflation. 

But I have severe doubts the slowdown in growth will be enough to 

bring inflation down to the sort of levels markets expect, let alone 

tackle how much it has spread from the initial supply shocks. In any 

case, one should view prognostications on inflation from central 

banks and markets with healthy skepticism. Both have consistently 

and dramatically underestimated the inflationary surge of the past 

two years. Even now, all that has really changed is that they have 

put off when the drop in inflation rates will happen, the level from 

which it declines and the interest rates required to reduce it. 

Perhaps the reason for getting it so wrong over the past couple of 

years is because they have the wrong diagnosis both of what happened 

in the 1970s and what has been happening these past few years. The 

1970s inflation started long before the first oil shock and 

continued long after its effects petered out. Inflation became such 

an intractable problem because over the years it broadened into 

every nook and cranny of the global economy. There are many 

similarities this time round, though with a twist. Headline 

inflation was driven lower for many years by falling prices for 

traded goods. Central banks reacted by keeping their foot firmly on 

the monetary stimulus pedal, even though interest rates had almost 

no effect on the prices of tradable goods and despite there being no 

signs that falling prices for traded goods was leading to lower 

domestic inflation, such as in services. It probably meant the 

opposite. Wage inflation, after all, has been rising for years. Over 

the past couple of years overall inflation has both broadened and 

climbed. Take the Consumer Price Index in the US. The median reading 

has increased from less than 2% in January 2021 to 5.8% currently. 

Leading the median upwards of late has been much higher prices for 

services rather than goods. 

If the world ended up with interest rates that were far too low for 

too long, recent and expected moves would only just undo some of 

that. Although markets expect real rates to be very positive down 

the road, this mostly depends on their being right that inflation 

will fall very sharply. For now, the gap between short-term term 

rates and inflation has never been wider. This is why one would 

struggle to find any model which churned out a required rate to slow 

inflation at anything like their current levels. Take, for example, 

the well-known Taylor rule. You can just about get a rate of 5% in 

the US if you skew the inputs sufficiently. On more reasonable 

assumptions, rates would need to be something like 10%. For the UK 

and euro zone, they would need to higher still on any assumptions. 

The dead hand of bad past monetary-policy decisions is also evident 

in the surprising lack of movement in yields on longer-dated bonds, 



UK government debt apart. A big reason they haven’t moved higher is 

that, thanks to huge quantitative easing and foreign-exchange 

intervention in the past two decades, central banks now hold a huge 

amount of outstanding government debt. Much higher long-term yields 

would have helped cool inflationary pressures. Absent such a move 

higher in long rates, central banks will have to do more heavy 

lifting with short rates. 

All this would only need to be halfway right for current rates to be 

wholly wrong. I simply cannot imagine Karl Otto Poehl, the president 

of Germany’s mighty Bundesbank from 1980, being anything other than 

derisive about what is currently being priced into markets. As 

Germany showed from the 1970s on, the monetary response to inflation 

matters. Expect more than muttering in coming months. 
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By Bloomberg News 

(Bloomberg) -- At the last Communist Party congress in 2017, Xi 

Jinping declared that China was “standing tall and firm in the 

East.” Now the US and key allies are looking to cut the world’s 

second-biggest economy down to size. 

The shift over the past five years gained momentum with Donald 

Trump’s tariff war, which helped cement the perception in Washington 

that China was more a threat than an opportunity – a view that held 

firm when Joe Biden became president. Last week, his administration 

imposed sweeping curbs to deprive China of advanced computer chips, 

taking aim at the party’s ability to achieve its long-term growth 

ambitions. 

Xi’s characterization of China’s position in the world -- and the 

security challenges it faces -- will be closely watched during his 

speech on Sunday kicking off the once-in-five-years party congress, 

at which he’s poised to secure a norm-breaking third term. 

Either way, the next five years look set to get more acrimonious 

between the globe’s top powers as economic and military tensions 

heat up across a range of fronts, including Taiwan. Although Xi and 

Biden may hold their first face-to-face meeting as presidents next 

month at the Group of 20 summit in Indonesia, expectations for a 

breakthrough are low. 

“I expect the US-China relationship to become more confrontational, 

not less,” said Bonnie Glaser, director of the Asia Program at the 

German Marshall Fund of the US. “I increasingly think it will take 

the shock of a significant crisis for the two countries to have a 

serious dialogue about how to peacefully coexist.” 

The mood now is starkly different than in 2017, when prominent 

voices in the US and China still favored engagement and conflicts 

appeared manageable. Yet trust withered away considerably over the 

past five years, making it politically difficult now in either 

country to make the case for a softer approach. 

In a polarized US, which is facing a range of domestic troubles and 

questions about its clout in the world, bipartisan support for a 

tougher line against China is strong. That’s mainly due to Beijing’s 

moves to crush dissent in Hong Kong and Xinjiang, lack of 

transparency on Covid, partnership with Russia and aggressive 

posture toward Taiwan and the South China Sea. 

“There has been a remarkable change in how Washington views the 

Chinese Communist Party,” said Ian Easton, senior director at the 

Project 2049 Institute, a research group that focuses on US policy 

toward Asia. “The implications of that for Beijing are hard to 

overstate.” 



Xi’s reference to “standing tall” in 2017 marked a dramatic shift 

from former leader Deng Xiaoping’s “hide and bide” strategy for 

China to keep a lower international profile while quietly building 

strength. Some voices in China, including Deng’s son, warned that 

China’s government risked drawing attention to the country’s rise 

too soon. 

But now it’s clear that confrontation is here to stay, and moderate 

voices in China have been silenced in recent years.  

“This is because the US has treated China as a strategic competitor, 

including on chips and the supply chain, the internationalization of 

NATO, etc.,” said Wang Yiwei, a former Chinese diplomat and director 

of Renmin University’s Institute of International Affairs in 

Beijing. “This is a very clear change.” 

The US and its allies see Xi undermining decades of international 

norms and institutions that fostered China’s rise, as well as the 

expansion of democracy and respect for human rights. 

‘Cold War’ 

“Under President Xi, the ruling Chinese Communist Party has become 

more repressive at home and more aggressive abroad,” US Secretary of 

State Antony Blinken said in a May speech laying out the Biden 

administration’s approach toward China. He said the US “will shape 

the strategic environment around Beijing” to advance American 

interests. 

From Beijing’s point of view, that means the US will keep trying to 

hem in China’s ambitions and growth. Foreign Minister Wang Yi has 

repeatedly accused the US of sticking with a “Cold War” mentality 

from the days of the Soviet Union. 

“The United States has framed a false narrative of ‘democracy versus 

authoritarianism,’ identified China as the primary rival and the 

most serious long-term challenge, and wantonly allowed its House 

speaker to visit Taiwan,” Wang said in a speech last month. 

Taiwan is at the center of US-China tensions. Beijing sees the self-

governing island as part of its territory and is now better prepared 

to act on that belief. China had already ramped up incursions into 

Taiwan’s air defense identification zone months before Nancy 

Pelosi’s visit in August prompted China to unleash unprecedented 

military drills and cut off talks in a range of areas. 

Biden has repeatedly said the US would come to the democracy’s aid 

if attacked, marking a shift in the policy of “strategic ambiguity” 

that guided US-China relations for decades -- even as the White 

House insists that nothing has changed. 

Biden’s Vow to Defend Taiwan Makes US Policy Shift Explicit 

The Biden administration’s efforts to prevent China from getting 

high-end semiconductor chips used in artificial intelligence and 

supercomputing is another key source of tension. Beijing has said 



the US moves are aimed at maintaining a “sci-tech hegemony” and 

intended to “hobble Chinese enterprises.” 

Xi has renewed calls for officials and companies to focus on making 

tech breakthroughs so the country can be less vulnerable to US 

moves, but progress has been mixed. Bloomberg News reported in 

August that Chinese officials were angry at how tens of billions of 

dollars funneled into the industry haven’t yielded much. 

It’s not just the US that has doubts about China’s trajectory, even 

as Beijing has managed to win backing on key issues like Xinjiang 

from many countries that depend on it as a top trading partner. 

A survey by the Pew Research Center this month showed that 

unfavorable views of China have climbed sharply in recent years in 

countries including South Korea, Australia, Canada, the UK and 

Germany. There was little confidence in Xi personally in nations 

across Europe and North America, Pew said.  

Indian billionaire Gautam Adani warned on Sept. 27 that current 

trends threaten to leave China isolated. “Increasing nationalism, 

supply chain risk mitigation and technology restrictions will have 

an impact,” Adani, the world’s fourth-richest person, said at the 

Forbes Global CEO Conference in Singapore. 

Meanwhile, Beijing’s actions have often backfired. Chinese officials 

appeared caught off-guard by Vladimir Putin’s decision to invade 

Ukraine just weeks after the Russian president and Xi met to affirm 

their “no limits” friendship. 

An investment agreement the EU and China spent seven years 

negotiating collapsed in late 2020 over Europe’s criticism of human 

rights abuses in Xinjiang. Border clashes with India helped push 

Prime Minister Narendra Modi to be more active in the Quad bloc with 

the US, Japan and Australia. 

Despite the strained ties, there’s little risk that Washington and 

Beijing cut ties entirely. Two-way trade totaled $466 billion in the 

first eight months of 2022, up $60 billion from the same period a 

year before. 

Changed Relationship 

While China’s prowess has grown under Xi, the country still can’t go 

it alone. Despite its “friendship” with Russia, Beijing has largely 

accepted the web of sanctions meant to undercut Putin’s war in 

Ukraine. Hong Kong banks have also respected US measures imposed on 

the city’s officials, wary of losing access to the dollar-based 

international financial system. 

“China still has incentives to maintain a peaceful relationship with 

the US,” said Vivian Zhan, associate professor of Chinese politics 

at the Chinese University of Hong Kong. 

But the terms of that relationship have shifted. 

China “wants to reach the point where, one, it can do whatever it 

wants and no one has anything to say about it, no one responds in a 



negative way because of Chinese power predominantly,” said Oriana 

Skylar Mastro, who studies China’s military at Stanford University’s 

Freeman Spogli Institute for International Studies. 

“And two,” she added, “that countries -- especially in the region -- 

when they make their own decisions, they accommodate Chinese 

preferences.” 


